

Service Manual

Models: GF18M(2-3)E

GF24M2E

GF24M3E

GF24M4E

GF36M4E

GF42M5E

(Refrigerant:R410A)

Multi systems

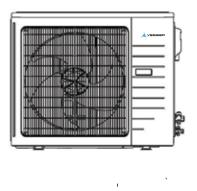
R410A

Commercial Air Conditioners

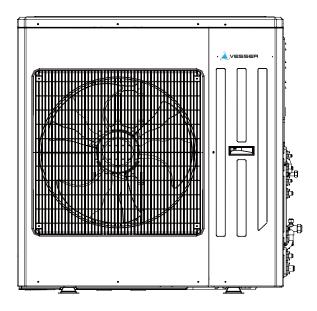
Table of Contents

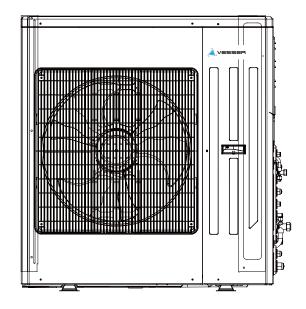

Part I: Technical Information	1
1. Summary	1
2. Specifications	
3. Outline Dimension Diagram	
4. Refrigerant System Diagram	12
5. Electrical Part	14
5.1 Wiring Diagram	14
5.2 PCB Printed Diagram	19
6. Function and Control	23
Part II: Installation and Maintenance	28
7. Notes for Installation and Maintenance	28
8. Installation Manual	
8.1 Electrical Connections	
8.2 Installing the Outdoor Unit	
8.3 Installation Dimension Diagram	
8.4 Check after Installation	
9. Maintenance	
9.1 Precautions before Performing Inspection or Repair	
9.2 Flashing LED of Indoor/Outdoor Unit and Primary Judgement	
9.3 Malfunction Checking and Elimination	
9.4 Maintenance Method for Normal Malfunction	72
10. Exploded View and Parts' List	74
11. Removal Procedure	
Appendix:	105
Appendix 1: Reference Sheet of Celsius and Fahrenheit	
Appendix 2: Configuration of Connection Pipe	105
Appendix 3: Pipe Expanding Method	106
Appendix 4: List of Resistance for Ambient Temperature Sensor	107

Part I: Technical Information


1. Summary

Outdoor Unit


GF18M(2-3)E


GF24M2E GF24M3E GF28M4E

GF36M4E

GF42M5E

2. Specifications

Model			GF18M(2-3)E
Product (Code		CB228W03500/CB228W03501
	Rated Voltage	V~	220-240V
Power	Rated Frequency	Hz	50
supply	Phases		1
Cooling	capacity(max~min)	W	5000(2050~6200)
	capacity(max~min)	W	5600(2500~6650)
	Power Input(max~min)	W	1550(500~2550)
	Power Input(max~min)	W	1550(580~2700)
	Current Input	A	6.88
	Current Input		6.88
	•	Α	2700
	ower Input	W	
Rated Cu	urrent	A	11.98
SEER		W/W	5.6
SCOP		W/W	3.8
	Compressor Trademark		ZHUHAI LANDA COMPRESSOR CO.,LTD
	Compressor Model		QXA-B141zF030A
	Compressor Refrigerant Oil Type		RB68EP
	Compressor Type		Rotary
	L.R.A	Α	1
	Compressor Rated Load Amp (RLA)	Α	7.2
	Compressor Power Input	W	1440
	Compressor Thermal Protector		1NT11L-6233
	Throttling Method		Electron expansion valve
	Cooling Operation Ambient Temperature Range	°C	-15~48
	Heating Operation Ambient Temperature Range	°C	-15~24
	Condenser Material		Aluminum Fin-copper Tube
	Condenser Pipe Diameter	mm	Ф7
	Rows-Fin Gap(mm)		2-1.4
	Coil length (I) X height (H) X coil width (L)	mm	851X38.1X660
		mm	
	Fan Motor Speed (rpm) (H/M/L)	rpm W	630 60
	Output of Fan Motor		00
Outdoor	Fan Motor RLA	A	1
Unit	Fan Motor Capacitor	μF	1
Offic	Air Flow Volume of Outdoor Unit	m³/h	3200
	Fan Type-Piece		Axial-flow Axial-flow
	Fan Diameter	mm	Ф520
	Defrosting Method		Automatic Defrosting
	Climate Type		T1
	Isolation		I
	Moisture Protection		IP24
	Permissible Excessive Operating Pressure for the	MD	4.0
	Discharge Side	MPa	4.3
	Permissible Excessive Operating Pressure for the		
	Suction Side	MPa	2.5
		m	062V700V206
	Dimension (W/H/D)	mm	963X700X396
	Dimension of Package (L/W/H)	mm	1026X455X735
	Dimension of Package(L/W/H)	mm	1029X458X750
	Net Weight	kg	50
	Gross Weight	kg	55
	efrigerant Charge		R410A
	Refrigerant Charge	kg	1.40

	Cross-sectional Area of Power Cable Conductor	mm2	2.50
	Recommended Power Cable(Core)	N	3
	Connection Pipe Connection Method	-	Flare Connection
	Not Additional Gas Connection Pipe Length	m	5
	Connection Pipe Gas Additional Charge	g/m	15
	Outer Diameter of Liquid Pipe		Φ6
Outdoor	(Metric)	mm	Ψο
Unit	Outer Diameter of Gas Pipe		40.50
	(Metric)	mm	Ф9.52
	Connection Pipe Max. Height Distance(indoor and		40
	indoor)	m	10
	Max. equivalent connection pipe length(outdoor to		00
	last indoor)	m	20
	Connection Pipe Max. Length Distance(total lenght)	m	20

The above data is subject to change without notice; please refer to the nameplate of the unit.

Model			GF24M2E	GF24M3E
Product (Code			
Dayyar	Rated Voltage	V~	220-240V	220-240V
Power	Rated Frequency	Hz	50	50
supply	Phases		1	1
Cooling	capacity(max~min)	W	7000(2200~10000)	7100(2200~10000)
	capacity(max~min)	W	7700(2600~11000)	8500(3600~11000)
	Power Input(max~min)	W	2460(650~4550)	2400(650~4550)
	Power Input(max~min)	W	2560(980~3950)	2350(980~3950)
	Current Input	A	10.91	10.91
	Current Input	A	11.36	11.36
	ower Input	W	4550	4550
Rated Cu	·	A	20.19	20.19
SEER	arrone	W/W	5.1	5.1
SCOP		W/W	3.8	3.8
3COP		VV/VV		
	Compressor Trademark		ZHUHAI LANDA	ZHUHAI LANDA
	·		COMPRESSOR CO.,LTD	COMPRESSOR CO.,LTD
	Compressor Model		QXAS-D23zX090B	QXAS-D23zX090B
	Compressor Refrigerant Oil Type		RB68EP	RB68EP
	Compressor Type		Rotary	Rotary
	L.R.A	Α	/	/
	Compressor Rated Load Amp (RLA)	Α	11.5	11.5
	Compressor Power Input	W	2550	2550
	Compressor Thermal Protector		1NT11L-6233	1NT11L-6233
	Throttling Method		Electron expansion valve	Electron expansion valve
	Cooling Operation Ambient Temperature Range	°С	-15~48	-15~48
	Heating Operation Ambient Temperature Range	°С	-15~24	-15~24
	Condenser Material		Aluminum Fin-copper Tube	Aluminum Fin-copper Tube
	Condenser Pipe Diameter	mm	Ф7	Ф7
	Rows-Fin Gap(mm)	mm	2-1.4	2-1.4
	Coil length (I) X height (H) X coil width (L)	mm	982.2X38.1X748	982.2X38.1X748
	Fan Motor Speed (rpm) (H/M/L)	rpm	710	710
	Output of Fan Motor	W	90	90
Outdoor	Fan Motor RLA	Α	/	/
	Fan Motor Capacitor	μF	,	,
Unit	Air Flow Volume of Outdoor Unit	m³/h	4000	4000
	Fan Type-Piece	111 /11	Axial-flow	Axial-flow
	Fan Diameter	mm	Ф552	Ф552
	Defrosting Method	111111	Automatic Defrosting	Automatic Defrosting
	Climate Type		T1	T1
	Isolation			
			ID24	ID24
	Moisture Protection		IP24	IP24
	Permissible Excessive Operating Pressure for the Discharge Side	MPa	4.3	4.3
	Permissible Excessive Operating Pressure for the			
	Suction Side	MPa	2.5	2.5
	Dimension (W/H/D)	mm	1001X790X427	1001X790X427
	Dimension of Package (L/W/H)	mm	1080X485X840	1080X485X840
	Dimension of Package(L/W/H)	mm	1083X488X855	1083X488X855
	Net Weight	kg	68	69
	Gross Weight	kg	73	74
	efrigerant Charge	3	R410A	R410A
	Refrigerant Charge	kg	2.00	2.20
	g	ყ		

	Cross-sectional Area of Power Cable Conductor	mm2	2.50	2.50	
	Recommended Power Cable(Core)	N	3	3	
	Connection Pipe Connection Method	-	Flare Connection	Flare Connection	
	Not Additional Gas Connection Pipe Length	m	5	5	
	Connection Pipe Gas Additional Charge	g/m	15	15	
	Outer Diameter of Liquid Pipe	mm	Ф6	Ф6	
Outdoor	(Metric)	111111	Ψθ	Ψ0	
Unit	Outer Diameter of Gas Pipe		Φ0.50	40.50	
	(Metric)	mm	mm Φ9.52	Ф9.52	
	Connection Pipe Max. Height Distance(indoor and		40	40	
	indoor)	m	10	10	
	Max. equivalent connection pipe length(outdoor to		00	00	
	last indoor)	m	20	20	
	Connection Pipe Max. Length Distance(total lenght)	m	20	20	

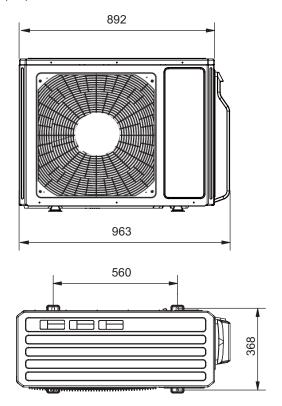
The above data is subject to change without notice. Please refer to the nameplate of the unit.

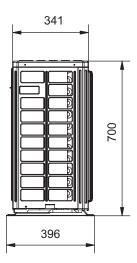
Model			GF28M4E
Product (Code		
	Rated Voltage	V~	220
Power	Rated Frequency	Hz	50
supply	Phases		1
Cooling	capacity(max~min)	W	8000(2200~10000)
	capacity(max~min)	W	9300(2800~11000)
	Power Input(max~min)	W	2490(650~4550)
	Power Input(max~min)	W	2580(980~3950)
	Current Input	A	11.05
	Current Input	A	11.45
	ower Input	W	4550
Rated Cu		A	20.19
SEER	niterit	W/W	5.1
			3.8
SCOP	O	W/W	ZHUHAI LANDA COMPRESSOR CO.,LTD
	Compressor Trademark		·
	Compressor Model		QXAS-D23zX090B
	Compressor Refrigerant Oil Type		RB68EP
	Compressor Type		Rotary
	L.R.A	Α	1
	Compressor Rated Load Amp (RLA)	Α	11.5
	Compressor Power Input	W	2550
	Compressor Thermal Protector		1NT11L-6233
	Throttling Method		Electron expansion valve
	Cooling Operation Ambient Temperature Range	°C	-15~48
	Heating Operation Ambient Temperature Range	°С	-15~24
	Condenser Material		Aluminum Fin-copper Tube
	Condenser Pipe Diameter	mm	Φ7
	Rows-Fin Gap(mm)	mm	2-1.4
	Coil length (I) X height (H) X coil width (L)	mm	982.2X38.1X748
	Fan Motor Speed (rpm) (H/M/L)	rpm	710
	Output of Fan Motor	W	90
	Fan Motor RLA	Α	1
Outdoor	Fan Motor Capacitor	μF	1
Unit	Air Flow Volume of Outdoor Unit	m³/h	4000
	Fan Type-Piece		Axial-flow
	Fan Diameter	mm	Ф552
	Defrosting Method		Automatic Defrosting
	Climate Type		T1
	Isolation		
	Moisture Protection		IP24
	Permissible Excessive Operating Pressure for the		
	Discharge Side	MPa	4.3
	Permissible Excessive Operating Pressure for the		
		MPa	2.5
	Suction Side		
	Dimension (W/H/D)	mm	1001X790X427
	Dimension of Package (L/W/H)	mm	1080X485X840
	Dimension of Package(L/W/H)	mm	1083X488X855
	Net Weight	kg	69
	Gross Weight	kg	74
	Refrigerant		R410A
	Refrigerant Charge	kg	2.20

	Cross-sectional Area of Power Cable Conductor	mm2	2.50	
	Recommended Power Cable(Core)	N	3	
	Connection Pipe Connection Method	-	Flare Connection	
	Not Additional Gas Connection Pipe Length	m	5	
	Connection Pipe Gas Additional Charge	g/m	15	
	Outer Diameter of Liquid Pipe	mm	Φ6	
Outdoor	(Metric)	mm	Ψθ	
Unit	Outer Diameter of Gas Pipe		Ф9.52	
	(Metric)	mm	Ψ9.52	
	Connection Pipe Max. Height Distance(indoor and		40	
	indoor)	m	10	
	Max. equivalent connection pipe length(outdoor to		00	
	last indoor)	m	20	
	Connection Pipe Max. Length Distance(total lenght)	m	20	

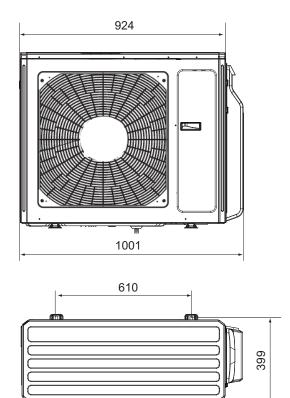
The above data is subject to change without notice. Please refer to the nameplate of the unit.

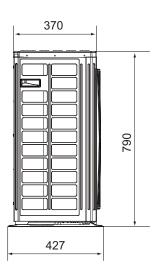
Model			GF36M4E	GF42M5E
Product 0	Code			
Power	Rated Voltage	V~	220-240V	220-240V
	Rated Frequency	Hz	50	50
supply	Phases		1	1
Cooling of	apacity(max~min)	W	10500(2100~11000)	12100(2100~13600)
Heating of	apacity(max~min)	W	12000(2600~13000)	13000(2600~14000)
Cooling F	Power Input	W	3500	3590
Heating F	Power Input	W	3750	3550
Cooling C	Current Input	Α	15.42	16.43
Heating C	Current Input	Α	15.20	16.22
Rated Po	wer Input	W	4880	5300
Rated Cu	rrent	Α	21.65	23.50
SEER		W/W	5.5	/
SCOP		W/W	3.8	/
		*****		MITSUBISHI
	Compressor Trademark		ZHUHAI LANDA	ELECTRIC(GUANGZHOU)
	Compressor trademark		COMPRESSOR CO.,LTD	· · · · · · · · · · · · · · · · · · ·
				COMPRESSOR CO.LTD
	Compressor Model		QXAS-D32zX090A	TNB306FPGMC
	Compressor Refrigerant Oil Type		RB68ER	PVE(PV50S)
	Compressor Type		Inverter Rotary	Inverter Rotary
	L.R.A	Α	1	1
	Compressor Rated Load Amp (RLA)	Α	14	13.5
	Compressor Power Input	W	3300	3010
	Compressor Thermal Protector		internal	internal
	Throttling Method		Electron expansion valve	Electron expansion valve
	Cooling Operation Ambient Temperature Range	°C	-15~48	-15~48
	Heating Operation Ambient Temperature Range	°С	-15~27	-15~27
	Condenser Material		Copper tube-Aluminum fin	Copper tube-Aluminum fin
	Condenser Pipe Diameter	mm	Ф7.94	Ф7.94
	Rows-Fin Gap(mm)	mm	2-1.4	2-1.4
	Coil length (I) X height (H) X coil width (L)	mm	1009.4X38.1X1056	1009.4X38.1X1056
	Fan Motor Speed (rpm) (H/M/L)	rpm	820	840
Outdoor	Output of Fan Motor	W	170	140
	Fan Motor RLA	Α	/	/
Unit	Fan Motor Capacitor	μF	/	/
	Air Flow Volume of Outdoor Unit	m ³ /h	5200	5500
	Fan Type-Piece		Axial-flow	Axial-flow
	Fan Diameter	mm	Ф570-152	Ф570-152
	Defrosting Method		Automatic Defrosting	Automatic Defrosting
	Climate Type		T1	T1
	Isolation			l
	Moisture Protection		IPX4	IPX4
	Permissible Excessive Operating Pressure for the			
	Discharge Side	MPa	4.3	4.3
	Permissible Excessive Operating Pressure for the			
		MPa	2.5	2.5
	Suction Side		4045744074400	4045744074400
	Dimension (W/H/D)	mm	1015X440X1103	1015X440X1103
	Dimension of Package (L/W/H)	mm	1155X490X1220	1155X490X1220
	Dimension of Package(L/W/H)	mm	1158X493X1235	1158X493X1235
	Net Weight	kg	94	102
	Gross Weight	kg	104	112
	Refrigerant		R410A	R410A
	Refrigerant Charge	kg	4.3	4.8


	Cross-sectional Area of Power Cable Conductor	mm2	4.0	4.0
	Recommended Power Cable(Core)	N	3	3
	Connection Pipe Connection Method	-	Flare Connection	Flare Connection
	Not Additional Gas Connection Pipe Length	m	40	50
	Connection Pipe Gas Additional Charge	g/m	22	22
	Outer Diameter of Liquid Pipe		Ф6	Ф6
	(Metric)1	mm	Ψθ	Ψο
	Outer Diameter of Gas Pipe	mm	Ф9.52	Ф9.52
	(Metric)1	mm	Ψ9.52	Ψ9.52
	Outer Diameter of Liquid Pipe		Ф6	Ф6
	(Metric)2		Ψ6	Ψ6
	Outer Diameter of Gas Pipe		\$0.50	\$0.50
	(Metric)2		Ф9.52	Ф9.52
	Outer Diameter of Liquid Pipe		+0	±0
Outdoor	(Metric)3		Ф6	Ф6
Unit	Outer Diameter of Gas Pipe		440	440
	(Metric)3		Ф12	Ф12
	Outer Diameter of Liquid Pipe		\$0.50	40
	(Metric)4		Ф9.52	Ф6
	Outer Diameter of Gas Pipe		440	A40
	(Metric)4		Ф16	Ф12
	Outer Diameter of Liquid Pipe		,	±0.50
	(Metric)5		/	Ф9.52
	Outer Diameter of Gas Pipe			
	(Metric)5		/	Ф16
	Connection Pipe Max. Height Distance(indoor and			
	indoor)	m	7.5	7.5
	Max. equivalent connection pipe length(outdoor to			
	last indoor)	m	20	25
	Connection Pipe Max. Length Distance(total lenght)	m	70	80

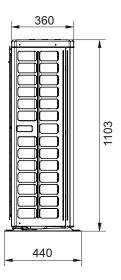

The above data is subject to change without notice. Please refer to the nameplate of the unit.

Technical Information • • • • • • • • • • • •

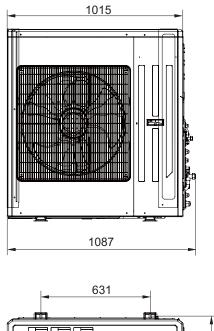

3. Outline Dimension Diagram

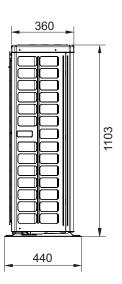

(1)Model:GF18M(2-3)E

(2)Models:GF24M2E GF24M3E GF28M4E



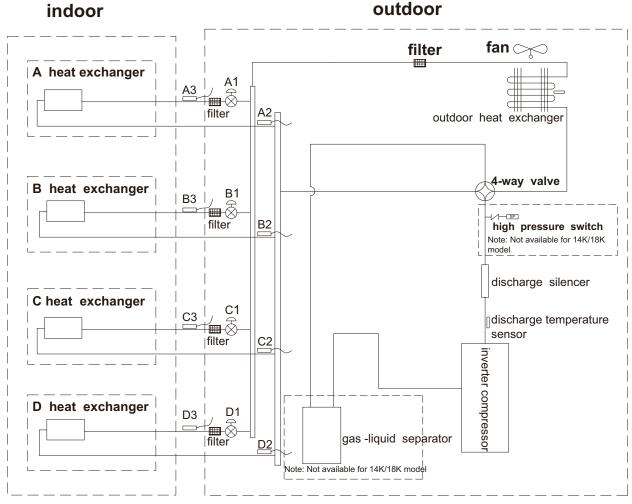
Unit:mm


(3)Model:GF36M4E



Unit:mm

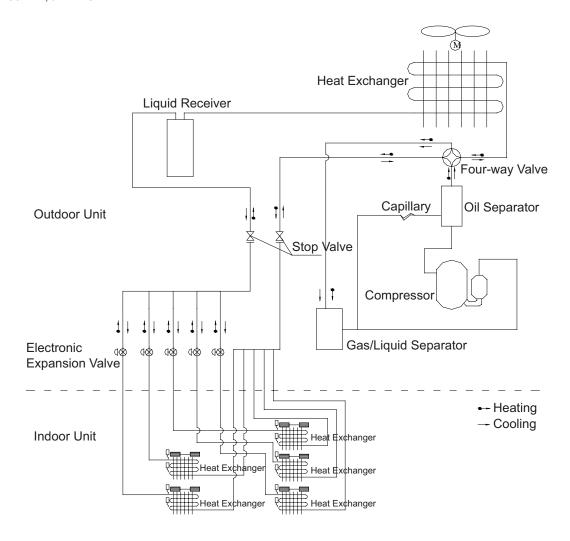
(4)Model:GF42M5E



Unit:mm

4. Refrigerant System Diagram

Models:GF18M(2-3)E GF24M2E GF24M3E GF28M4E


A1:A-unit electronic expansion valve B1:B-unit electronic expansion valve C1:C-unit electronic expansion valve D1:D-unit electronic expansion valve

A2:A-unit gas pipe temperature sensor B2:B-unit gas pipe temperature sensor

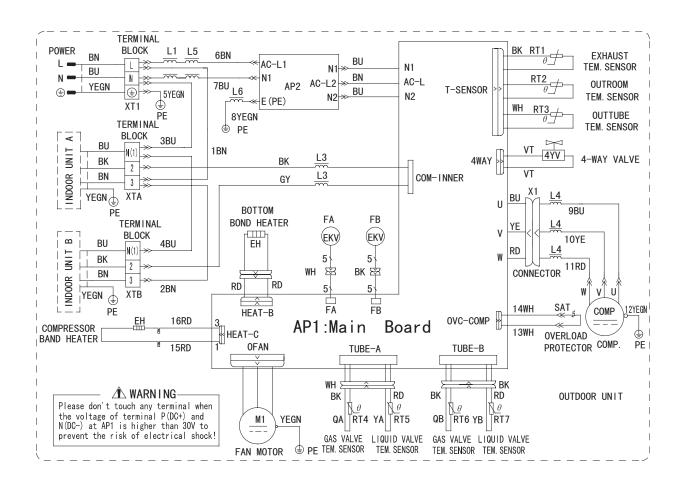
C2:C-unit gas pipe temperature sensor D2:D-unit gas pipe temperature sensor

A3:A-unit liquid pipe temperature sensor C3:C-unit liquid pipe temperature sensor D3:D-unit liquid pipe temperature sensor

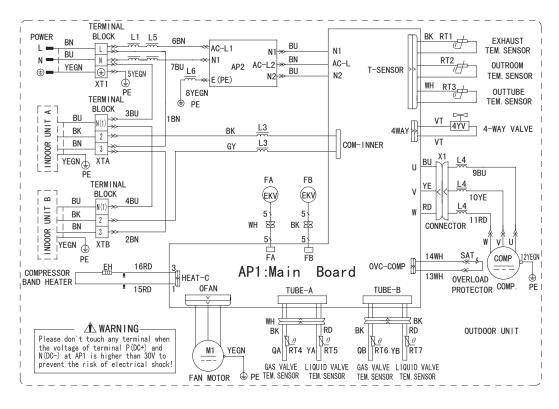
Models:GF36M4E,GF42M5E

The outdoor and indoor units start to work once the power is switched on. During the cooling operation, the low temperature, low pressure refrigerant gas from the heat exchanger of each indoor unit gets together and then is taken into the compressor to be compressed into high temperature, high pressure gas, which will soon go to the heat exchanger of the outdoor unit to exchange heat with the outdoor air and then is turned into refrigerant liquid. After passing through the throttling device, the temperature and pressure of the refrigerant liquid will further decrease and then go the main valve. After that, it will be divided and go to the heat exchanger of each indoor unit to exchange heat with the air which needs to be conditioned. Consequently, the refrigerant liquid become low temperature, low pressure refrigerant gas again. Such a refrigeration cycle goes round and round to achieve the desired cooling purpose. During the heating operation, the four-way valve is involved to make the refrigeration cycle run reversely. The refrigerant radiates heat in the heat exchanger of the indoor unit (so do the electric heating devices) and absorb heat in the heat exchanger of the outdoor unit for a heat pump heating cycle so as to achieve the desired heating purpose.

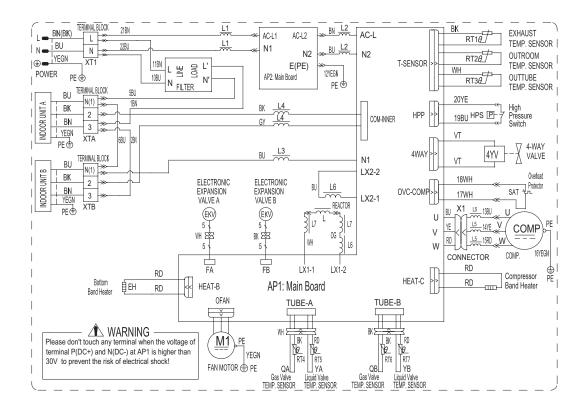
5. Electrical Part

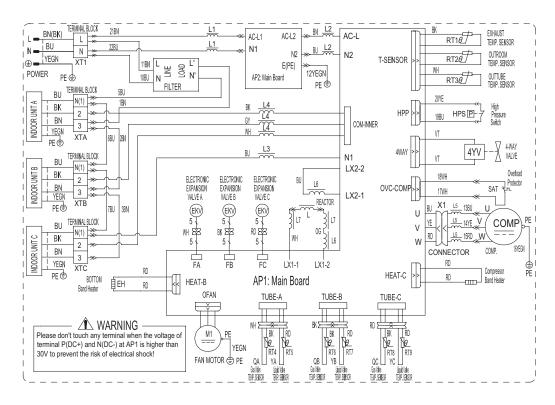

5.1 Wiring Diagram

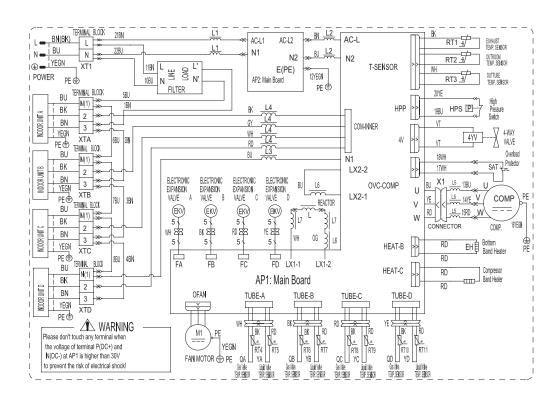
Instruction

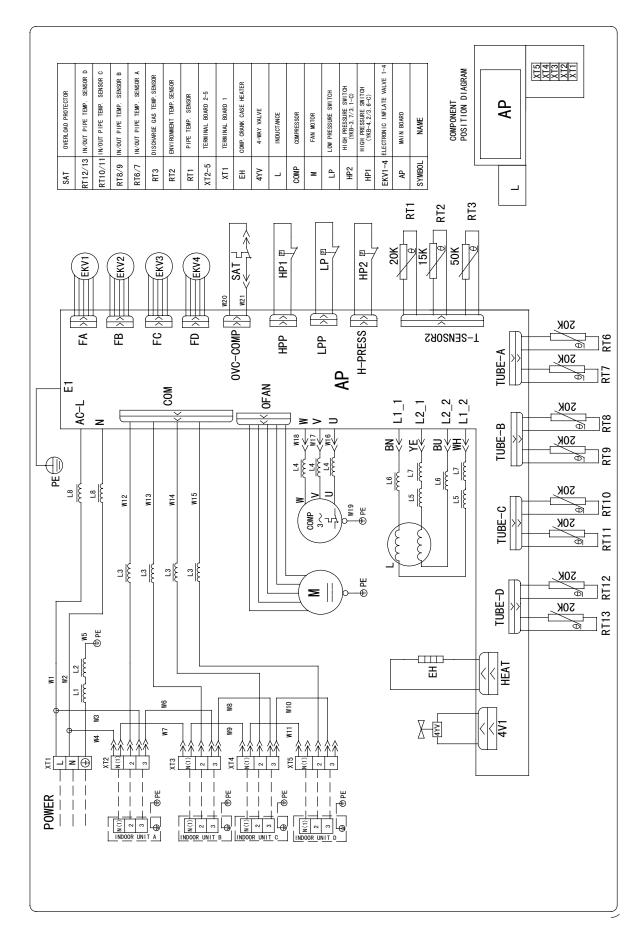

Symbol	Symbol Color	Symbol	Symbol Color	Symbol	Name
WH	White	GN	GREEN	COMP	Compressor
YE	Yellow	BN	Brown		Grouding wire
RD	Red	BU	Blue		
YEGN	Yellow/Green	BK	Black		
VT	Violet	OG	Orange		

• Indoor Unit

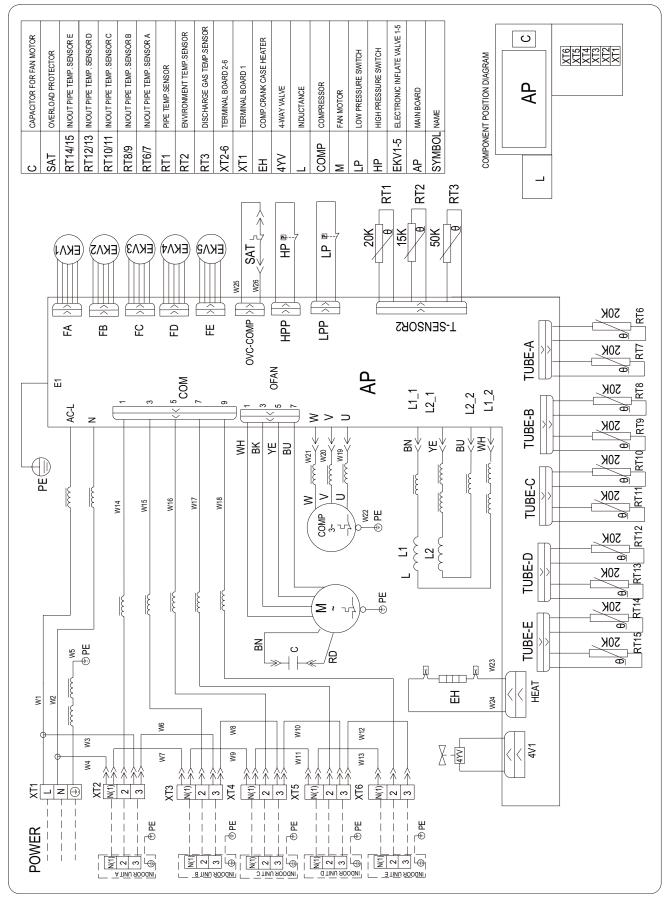

(1)Model:GF18M(2-3E)


(2)Model:GF18M(2-3)E


(3)Model:GF24M2E


(4)Model:GF24M3E

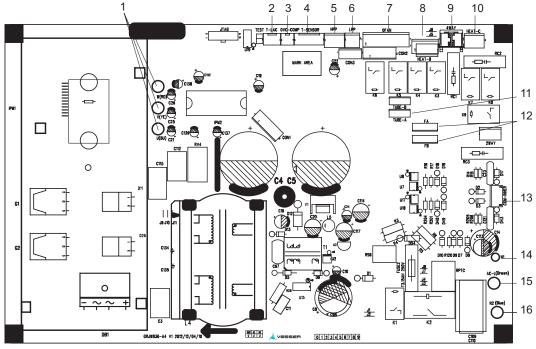
(5)Model:GF28M4E



(6)Model:GF36M4E

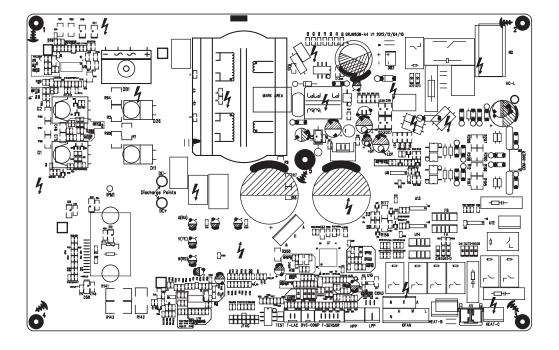
Technical Information

(7) Model: GF42M5E

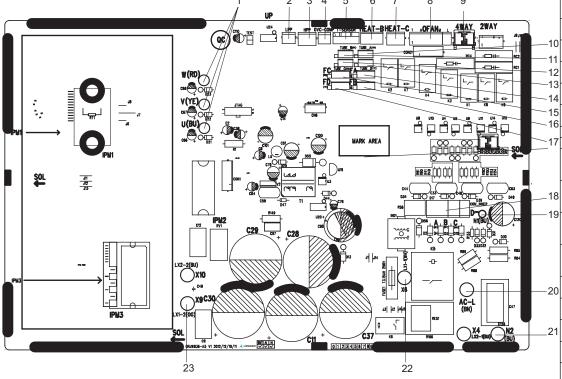


These circuit diagrams are subject to change without notice, please refer to the one supplied with the unit.

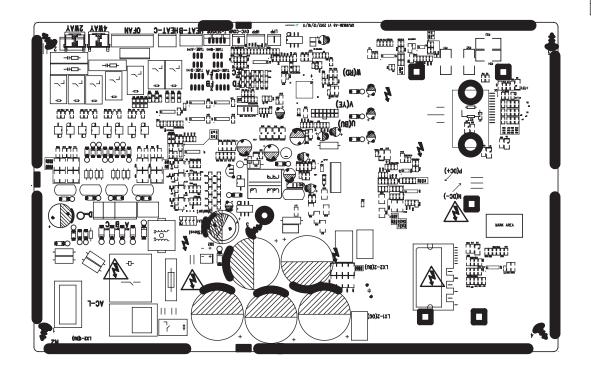
5.2 PCB Printed Diagram


(1)Model:GF18M(2-3)E

• TOP VIEW

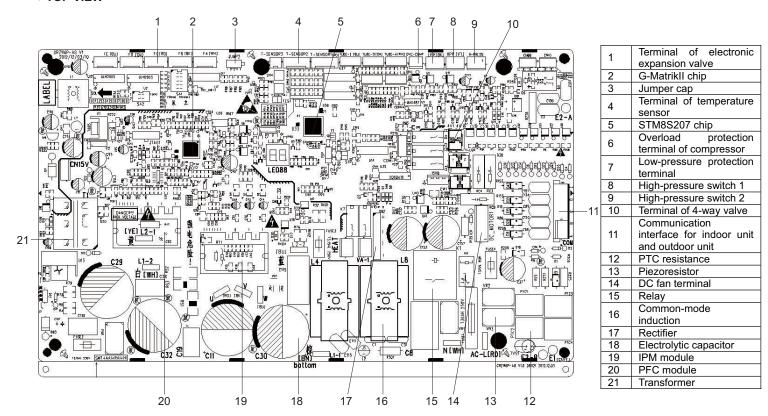

1	Terminal of compressor
_	Terminal of
2	low-temperature cooling
	temperature sensor
3	Overload protection
	terminal of compressor
4	Temperature sensor
	terminal of outdoor unit
5	High-pressure protection
	terminal
6	Low-pressure protection
•	terminal
7	Terminal of outdoor fan
8	Electric heating belt
0	terminal of chassis
9	Terminal of 4-way valve
10	Electric heating belt
10	terminal of compressor
	Terminal of temperature
11	sensor wire for gas valve
	and liquid valve
12	Terminal of electronic
12	expansion valve
	Terminal of
13	communication wire for
13	indoor unit and outdoor
	unit
14	Terminal of neutral wire
14	for communication
	T ' 1 (1' '
15	Terminal of live wire

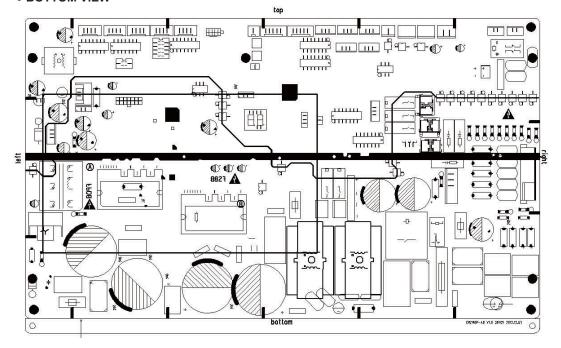
• BOTTOM VIEW


(2)Models:GF24M2E GF24M3E GF28M4E

TOP VIEW

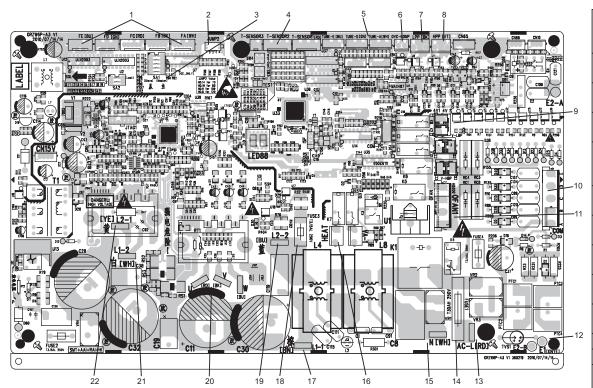
1	Terminal of compressor
2	Low-pressure protection
2	terminal
3	High-pressure protection
3	terminal
4	Overload protection
4	terminal of compressor
5	Temperature sensor
3	terminal of outdoor unit
6	Electric heating terminal
0	of chassis
7	Electric heating terminal
-	of compressor
8	Terminal of outdoor fan
9	Terminal of 4-way valve
	Temperature sensor of
10	liquid valve and gas
	valve for unit A
	Temperature sensor of
11	liquid valve and gas
	valve for unit B
	Temperature sensor of
12	liquid valve and gas
	valve for unit C
	Temperature sensor of
13	liquid valve and gas
	valve for unit D
14	Electronic expansion
	valve for unit A
15	Electronic expansion
	valve for unit C
16	Electronic expansion
17	valve for unit B
17	Electronic expansion
18	valve for unit D
18	Communication wire connected with indoor
	connected with indoor unit
19	
19	Neutral wire of communication
20	Live wire
21	Neutral wire
22	Reactor wire 1
23	Reactor wire 2


• BOTTOM VIEW

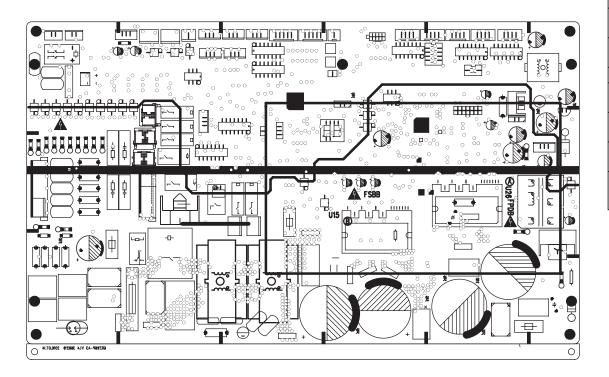

Terminal of electronic expansion valve

(3)Model:GF36M4E

• TOP VIEW



BOTTOM VIEW



(4)Model:GF42M5E

TOP VIEW

BOTTOM VIEW

- FA-FE: Teminals
 of EXV(Electronic
 expansion Valve)

 JUMP2:the code of
 capcity

 SA1: Master select
- switch

 T-SENSOR2:Teminals of temperature sensor
- TUBE-A TUBE-5 E:Teminals of tube temperature sensor
- 6 OVC-COMP:Teminals of overload protector
- 7 LPP:Teminals of low pressure switch
- 8 HPP:Teminals of high pressure switch
- 9 4V1:Teminals of 4-way valve
 COM:Teminals of
- 10 COM: Teminals of communication
 11 OFAN1:Teminals of fan
- 12 E1:Teminals of Earth
- 13 AC-L:Teminals of line wire
- 14 FUSE1: Fuse
- 15 N:Teminals of neureal wire
- 16 HEAT:Teminals of compressor band heater
- 17 L1-1:Teminals of reactor's brown wire
- 18 FUSE3: Fuse of fan
- 19 L2-2:Teminals of reactor's blue wire
- 20 U/V/W:Teminals of compressor
- 21 L1-2:Teminals of reactor's white wire
- L2-1:Teminals of reactor's vellow wire

6. Function and Control

For 18/24/28K

1 Basic functions of the system

1.1 Cooling Mode

1.1.1 Cooling conditions and process:

If the compressor is in stop status and start the unit for cooling operation, when one of the indoor units reaches the cooling operation condition, the unit start cooling operation; in this case, the electronic expansion valve, the outdoor fan and the compressor start operation.

1.1.2 Stop in cooling operation

1.1.2.1 Compressor stops

The compressor stops immediately, the outdoor fan stops after 1min.

1.1.2.2 Some of the indoor units reach the stop condition (the compressor does not stop)

The compressor operates immediately according to the required frequency. For the indoor unit with no requirement, the corresponding electronic expansion valve is closed to OP.

1.1.3 Cooling mode transfers to heating mode

When the unit transfers to heating mode, the 4-way valve is energized after the compressor stops for 2min. The other disposals are the same as stopping in cooling mode.

- 1.1.4 4-way valve: in this mode, the 4-way valve is closed.
- 1.1.5 Outdoor fan control in cooling mode

The outdoor fan starts before 5s of the starting of compressor. The outdoor fan will run in high speed for 3min after starting and then it will run in set speed. The fan shall run at every speed for at least 80s. (When the quantity of running indoor unit is changed, the unit will enter the control described in 1.3.5.1 and 1.3.5.2);

When the compressor stops, the outdoor fan runs at present speed and stops after 1min.

1.2 Dry Mode

- 1.2.1 The dry conditions and process are the same as those in cooling mode;
- 1.2.2 The status of 4-way valve: closed;
- 1.2.3 The temperature setting range: $16 \sim 30 \,^{\circ}\text{C}$;
- 1.2.4 Protection function: the same as those in cooling mode;
- 1.2.5 In dry mode, the maximum value A of the capacity requirement percentage of single unit is 90% of that in cooling mode.

The open condition of the electronic expansion valve, outdoor fan and compressor is the same as those in cooling mode.

1.3 Heating Mode

1.3.1 Cooling conditions and process:

When one of the indoor units reaches the heating operation condition, the unit starts heating operation.

- 1.3.2 Stop in heating operation:
- 1.3.2.1 When all the indoor units reach the stop condition, the compressor stops and the outdoor fan stops after 1min;
- 1.3.2.2 Some of the indoor units reach the stop condition

The compressor reduces the frequency immediately and operates according to the required frequency;

- 1.3.2.3 Heating mode transfers to cooling mode(dry mode), fan mode
- a. The compressor stops; b. the power of 4-way valve is cut off after 2min; c. the outdoor fan stops after 1min; d. the status of 4-way valve: energized;

1.3.3 Outdoor fan control in heating mode

The outdoor fan starts before 5s of the starting of compressor and then it will run in high speed for 40s;

The fan shall run at every speed for at least 80s;

When the compressor stops, the outdoor fan stops after 1min.

1.3.4 Defrosting function

When the defrosting condition is met, the compressor stops; the electronic expansion valve of all indoor units open in big angle; the outdoor fan stops after 40s of the stop of compressor, meanwhile, the 4-way valve reverses the direction; after the 4-way valve reverses the direction, the compressor starts; then begin to calculate the time of defrosting, the frequency of the compressor rises to reach the defrosting frequency.

1.3.5 Oil-returned control in heating mode

1.3.5.1 Oil-returned condition

The whole unit is operating in low frequency for a long time

1.3.5.2 Oil-returned process in heating mode

The indoor unit displays "H1"

1.3.5.3 Oil-returned finished condition in heating mode

The duration reaches 5min

1.4 Fan Mode

The compressor, the outdoor fan and the 4-way valve are closed; temperature setting range is $16{\sim}30^{\circ}$ C.

2. Protection Function

2.1 Mode Conflict Protection of indoor unit

When the setting mode is different of different indoor unit, the unit runs in below status:

- a. The mode of the first operating indoor unit is the basic mode, then compare the mode of the other indoor units to see if there is a conflict. Cooling mode (dry mode) is in conflict with heating mode.
- b. Fan mode is in conflict with heating mode and the heating mode is the basic mode. No matter which indoor unit operates first, the unit will run in heating mode.

2.2 Overload protection function

When the tube temperature is a little low, the compressor raises the operation frequency; when the tube temperature is a little high, the compressor frequency is restricted or lows down the operation frequency; when the tube temperature is too high, the compressor protection stops running.

If the discharge temperature protection continuously appears for 6 times, the compressor can't resume running. The compressor can resume running after cutting off the power and then putting through the power. (if the running time of the compressor is longer than 7min, the protection times record will be cleared)

2.3 Discharge Protection Function

When the discharge temperature is a little low, the compressor raises the operation frequency; when the discharge temperature is a little high, the compressor frequency is restricted or lows down the operation frequency; when the discharge temperature is too high, the compressor protection stops running.

If the discharge temperature protection continuously appears for 6 times, the compressor can't resume running. The compressor can resume running after cutting off the power and then putting through the power. (if the running time of the compressor is longer than 7min, the protection times record will be cleared)

2.4 Communication malfunction

Detection of the quantity of installed indoor units:

After 3min of energizing, if the outdoor unit does not receive the communication data of certain indoor unit, the outdoor unit will judge that indoor unit is not installed and will treat it as it is not installed. If the outdoor unit receives the communication data of that indoor unit later, the outdoor unit will treat that unit as it is installed.

2.5 Overcurrent Protection

a. Overcurrent protection of complete unit; b. phase wire current protection; c. compressor phase current protection

2.6 Compressor high-pressure protection

2.6.1 When the high-pressure switch is detected cut off for 3s continuously, the compressor will enter high-pressure protection as it stops when reaching set temperature. Meanwhile, the outdoor unit will send the signal of "high-pressure protection" to the indoor units;

2.6.2 After the appearance of high-pressure protection, when the high-pressure switch is detected closed for 6s continuously, the compressor can resume running only after cutting off the power and then putting through the power.

2.7 Compressor overload protection

If the compressor overload switch is detected having movement, the indoor unit will display the corresponding malfunction as it stops when the indoor temperature reaching set temperature. When the compressor stops for more than 3min and the compressor overload switch is reset, the unit will resume operation status automatically. If the protection appears for more than 6 times (if the running time of the compressor is longer than 30min, the protection times record will be cleared), the unit can not resume operation status automatically, but can resume running only after cutting off the power and then putting through the power.

2.8 Compressor Phase-lacking Protection

When the compressor starts, if one of the three phases is detected open, the compressor will enter phase-lacking protection. The malfunction will be cleared after 1min, the unit will restart and then detect if there is still has phase-lacking protection. If the phase-lacking protection is detected for 6 times continuously, the compressor will not restart but can resume running only after cutting off the power and then putting through the power. If the running time of the compressor is longer than 7min, the protection times record will be cleared.

2.9 IPM Protection

2.9.1 When the IMP module protection is detected, the unit will stop as the indoor temperature reaching set temperature, PFC is closed, display IMP protection malfunction. After the compressor stops for 3min, the unit will resume operation status automatically; if the IMP protection is detected for more than 6 times continuously (If the running time of the compressor is longer than 7min, the protection times record will be cleared), the system will stop and send the signal of module protection to indoor unit. The unit can not resume operation status automatically, but can resume running only after cutting off the power and then putting through the power.

- 2.9.2 IMP module overheating protection
- 2.9.2.2 When $T_{IMP} \ge 90^{\circ}C$, the operation frequency of compressor lows down by 15% every 90s according to the present capacity requirement of the complete unit. It will keep 90s after lowing down the frequency. After lowing down the frequency, if $T_{IMP} \ge 90^{\circ}C$, the unit will circulate the above movement until reaching the minimum frequency; if $85^{\circ}C < T_{IMP} < 90^{\circ}C$, the unit will run at this frequency; when $T_{IMP} \le 85^{\circ}C$, the unit will run at the frequency according to the capacity requirement;
- 2.9.2.3 When $T_{IMP} \ge 95^{\circ}C$, the compressor stops. After the compressor stops for 3min, if $T_{IMP} < 85^{\circ}C$, the compressor and the outdoor fan will resume operation.

For 36K/42K

1.Function Control

1) Cooling mode

- a. Turning on the unit for cooling operation, and if any one of the indoor units satisfy the cooling operation condition, the system will start for cooling operation; and the electronic expansion valve, the outdoor fan and the compressor start operation.
- b. When some of the indoor units satisfy the stop-condition while some indoor units does not satisfy the stop-condition, the compressor does not stop, the compressor adjust the frequency according to demand. For the indoor unit with stop-condition satisfies, the corresponding electronic expansion valve will be closed.
- c. Change Cooling mode to heating mode

When change the unit to heating mode from cooling mode, the whole system will stop first. Then the system will restart in heating mode after the compressor stops.

d. 4-way valve

In this mode, the 4-way valve is closed.

e. Outdoor fan control in cooling mode

The outdoor fan starts before 5s of the starting of compressor. The outdoor fan will run in midlle speed after starting and then it will run in set speed.

2) Dry mode (dehumidification mode)

this mode is the same as cooling mode;

3) Heating mode

- a. Turning on the unit for heating operation, If any one of the indoor unit satisfy the heating condition, the system will start to run in heating mode
- b. If all the indoor units satisfy the stop-condition, the compressor stops and the outdoor fan stops after 1min;
- c. If only part of the indoor units satisfy the stop-condition, the compressor decrease the frequency immediately and operates according to demand.
- d. Change Heating mode to cooling mode or dehumidification mode, the whole system will stop first, then restart under the required mode.
- e. Defrosting function

When the defrosting condition is satisfied, the 4-way valve reverses the direction, the outdoor fan stop. After the 4-way valve reverses the direction, the frequency of compressor rises, and the unit

will start defrosting under cooling cycle.

f. Oil-return control in heating mode

a)If the whole system runs in low frequency for a long time, the system will run a oil-return operation in high frequency, the indoor unit displays "H1", the oil-return operation will runs for 3 minutes.

4) Fan mode

Only indoor fan run. Compressor, outdoor fan and 4-way valve are closed.

2.Protection Function

1) Mode conflict protection of indoor units

When the setting mode is different of different indoor unit, the unit runs in below status:

- a. The system mode is determined by the first turning on indoor unit except indoor unit is in fan mode. Cooling mode (dry mode) is in conflict with heating mode.
- b. If the first turning on unit is fan mode, and the second turning on unit is cooling or heating mode, then the system will run in cooling or heating mode

2) Overload protection

If the tube temperature at the high pressure side is higher than normal, the compressor frequency is restricted or decreased to normal operation frequency.

3) High exhaust temperature protection

If the exhaust temperature is higher than protection value, the compressor stops running.

If the exhaust temperature protection continuously appears for 6 times, the compressor can't resume running. In this case, only by cutting off the power and then reenergize that the compressor can restart. If the running duration of the compressor is longer than 7min, the protection times will be cleared to zero time.

4) Communication malfunction

Detection of the quantity of installed indoor units: after 3min of energizing, if the outdoor unit does not receive the communication data of certain indoor unit, the outdoor unit will judge that indoor unit is not installed. If the outdoor unit receives the communication data of that indoor unit later, the communication malfunction will be cleared.

5) System high-pressure protection

- a. When the high-pressure switch detects the system pressure higher than limit ,then the high-pressure switch cuts off, the system will stop to run.
- b.lf high-pressure protection is detected for two times within one hour, only by cutting off the power and then reenergize that the compressor can restart.

6)System low-pressure protection

- a. When the low-pressure switch detects the system pressure lower than limit ,then the los-pressure switch cuts off , the system will stop to run.
- b. If low-pressure protection is detected for two times within one hour, only by cutting off the power and then reenergize that the compressor can restart.

7) Compressor overload protection

No matter the compressor is on or off, when the compressor overload switch is detected activated, the system will stop and indoor unit will display H3. If the compressor overload protection appears for more than 6 times, in this case, only by cutting off the power and then reenergize that the compressor can restart. If the running duration of the compressor is longer than 30min, the protection times will be cleared to zero.

3.Other function

1) Refrigerant Recovery

When the unit is powered on and runs under the COOL mode, it is available within five minute to go the refrigerant recovery mode by pressing three times the "LIGHT" button on the wireless controller in three seconds with "Fo"displayed.

How to quit the refrigerant recovery:

When the refrigerant recovery has started, it will quit when there is a signal from the wireless controller or it has run for ten minutes.

2) Setting function of master/slave indoor unit

Picture of DIP switch on outdoor mainboard :

SA1(5-bit): dial-switch for master/slave indoor unit,

SA2(2-bit): dial-switch for mode locking (not for wall mounted indoor units)

5-bit dial-switch to set master/slave indoor unit: it is corresponding to indoor units of no.1 to no.5. Dial the switch to ON(master side. Right side) to set that indoor unit as master indoor unit, and dial the switch to slave side(left side) to set indoor unit as slave indoor unit. There can be only one master unit in a system, If more than one indoor units are set as master unit, the unit with smallest number is the master unit. (smallest number here means number 1 to number 5 on the switch)

2-bit dial-switch to set mode locking

(note:

1.only use no.1 bit. no.2 bit is for future use

2.this function is only for duct and cassette unit, not for wall mounted unit:

Locked mode: Switch no.1 bit to "ON" side(lock side, or right side on the picture): even the master indoor unit is off, the system will run according to the mode before the master unit off.

Unlocked mode: Switch no.1 bit to left side on the picture: If the master indoor unit is off, the system will not care what the master unit mode was, it will run according to the mode of the first turning on slave indoor unit.

Note: For wall-mounted indoor unit, unlocked model is default, and locked mode is invalid.

Technical Information • • • • • • • • •

Part II: Installation and Maintenance

7. Notes for Installation and Maintenance

Safety Precautions: Important!

Please read the safety precautions carefully before installation and maintenance.

The following contents are very important for installation and maintenance.

Please follow the instructions below.

- •The installation or maintenance must accord with the instructions.
- Comply with all national electrical codes and local electrical codes.
- Pay attention to the warnings and cautions in this manual.
- All installation and maintenance shall be performed by distributor or qualified person.
- •All electric work must be performed by a licensed technician according to local regulations and the instructions given in this manual.
- •Be caution during installation and maintenance. Prohibit incorrect operation to prevent electric shock, casualty and other accidents.

Warnings

Electrical Safety Precautions:

- 1. Cut off the power supply of air conditioner before checking and maintenance.
- 2. The air condition must apply specialized circuit and prohibit share the same circuit with other appliances.
- 3. The air conditioner should be installed in suitable location and ensure the power plug is touchable.
- 4. Make sure each wiring terminal is connected firmly during installation and maintenance.
- 5. Have the unit adequately grounded. The grounding wire can't be used for other purposes.
- 6. Must apply protective accessories such as protective boards, cable-cross loop and wire clip.
- 7. The live wire, neutral wire and grounding wire of power supply must be corresponding to the live wire, neutral wire and grounding wire of the air conditioner.
- 8. The power cord and power connection wires can't be pressed by hard objects.
- 9. If power cord or connection wire is broken, it must be replaced by a qualified person.

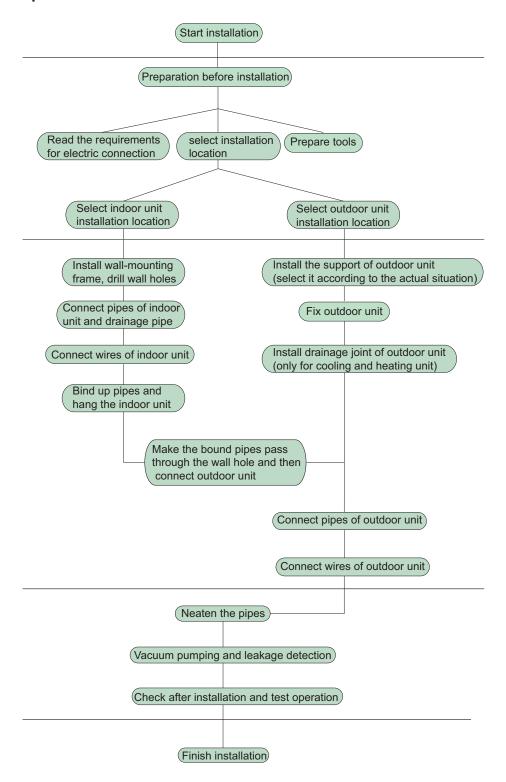
- 10. If the power cord or connection wire is not long enough, please get the specialized power cord or connection wire from the manufacture or distributor. Prohibit prolong the wire by yourself.
- 11. For the air conditioner without plug, an air switch must be installed in the circuit. The air switch should be all-pole parting and the contact parting distance should be more than 3m.
- 12. Make sure all wires and pipes are connected properly and the valves are opened before energizing.
- 13. Check if there is electric leakage on the unit body. If yes, please eliminate the electric leakage.
- 14. Replace the fuse with a new one of the same specification if it is burnt down; don't replace it with a cooper wire or conducting wire.
- 15. If the unit is to be installed in a humid place, the circuit breaker must be installed.

Installation Safety Precautions:

- 1. Select the installation location according to the requirement of this manual.(See the requirements in installation part)
- 2. Handle unit transportation with care; the unit should not be carried by only one person if it is more than 20kg.
- 3. When installing the indoor unit and outdoor unit, a sufficient fixing bolt must be installed; make sure the installation support is firm.
- 4. Ware safety belt if the height of working is above 2m.
- 5. Use equipped components or appointed components during installation.
- 6. Make sure no foreign objects are left in the unit after finishing installation.

Refrigerant Safety Precautions:

- 1. Avoid contact between refrigerant and fire as it generates poisonous gas; Prohibit prolong the connection pipe by welding.
- 2. Apply specified refrigerant only. Never have it mixed with any other refrigerant. Never have air remain in the refrigerant line as it may lead to rupture or other hazards.
- 3. Make sure no refrigerant gas is leaking out when installation is completed.
- 4. If there is refrigerant leakage, please take sufficient measure to minimize the density of refrigerant.
- 5. Never touch the refrigerant piping or compressor without wearing glove to avoid scald or frostbite.


Improper installation may lead to fire hazard, explosion, electric shock or injury.

Main Tools for Installation and Maintenance

8. Installation Manual

Installation procedures

Note: this flow is only for reference; please find the more detailed installation steps in this section.

8.1 Electrical Connections

GF18M(2-3)E GF24M2E

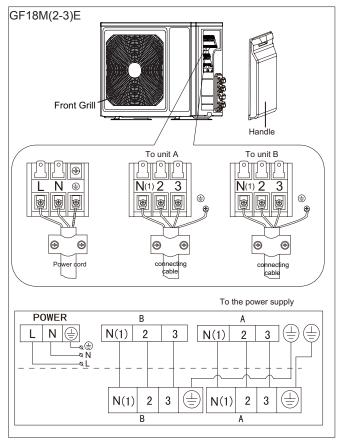
- 1. Remove the handle at the right side plate of the outdoor unit (one screw).
- 2. Remove the cable clamp, connect the power connection cable with the terminal at the row of connection and fix the connection. The fitting line distributing must be consistent with the indoor unit. terminal of line bank. Wiring should meet that of indoor unit.
- 3. Fix power connection wire by wire clamp.
- 4. Ensure wire has been fixed well.
- 5. Install the handle.

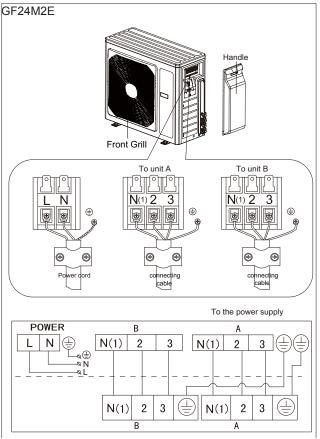
Including an air switch with suitable capacity, please note the following table. Air switch should be included magnet buckle and heating buckle function, it can protect the circuit-short and overload. (Caution: please do not use the fuse only for protect the circuit)

Air-conditioner	Air switch capacity
GF18M(2-3)E	20A
GF24M2E	25A

An all-pole disconnection switch having a contact separation of at least 3mm in all pole should be connected in fixed wiring.

Wrong wire connection may cause malfunction of some electric components. After fixing cable, ensure that leads between connection to fixed point have some space.




The connection pipes and the connectiong wirings of the unit A and unit B must be corresponding to each other respective.

The appliance shall be installed in accordance with national wiring regulations.

Note: the above figures are only intended to be a simple diagram of the appliance and may not correspond to the appearance of the units that have been purchased.

GF24M3E

- 1. Remove the handle at the right side plate of the outdoor unit (one screw).
- 2. Remove the cable clamp, connect the power connection cable with the terminal at the row of connection and fix the connection. The fitting line distributing must be consistent with the indoor unit. terminal of line bank. Wiring should meet that of indoor unit
- 3. Fix power connection wire by wire clamp.
- 4. Ensure wire has been fixed well.
- 5. Install the handle.

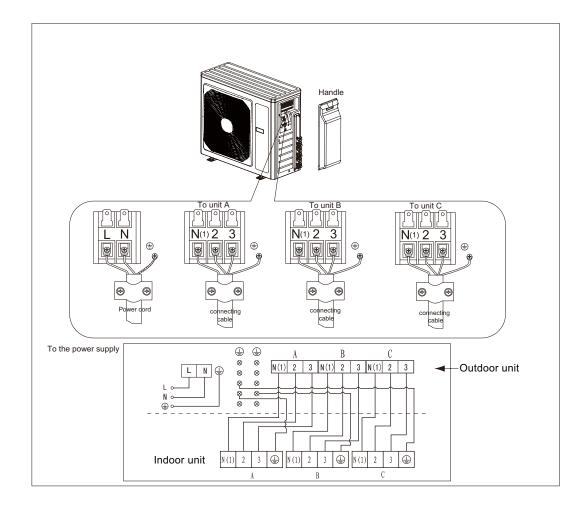
 $\overline{\mathbb{W}}$

Including an air switch with suitable capacity, please note the following table. Air switch should be included magnet buckle and heating buckle function, it can protect the circuit-short and overload. (Caution: please do not use the fuse only for protect the circuit)

Air-conditioner	Air switch capacity
GF24M3E	25A

An all-pole disconnection switch having a contact separation of at least 3mm in all pole should be connected in fixed wiring.

Wrong wire connection may cause malfunction of some electric components. After fixing cable, ensure that leads between connection to fixed point have some space.



The connection pipes and the connectiong wirings of the unit A, unit B, unit C and unit D must be corresponding to each other respective.

The appliance shall be installed in accordance with national wiring regulations.

Note: The above figures are only intended to be a simple diagram of the appliance and may not correspond to the appearance of the units that have been purchased.

GF28M4E

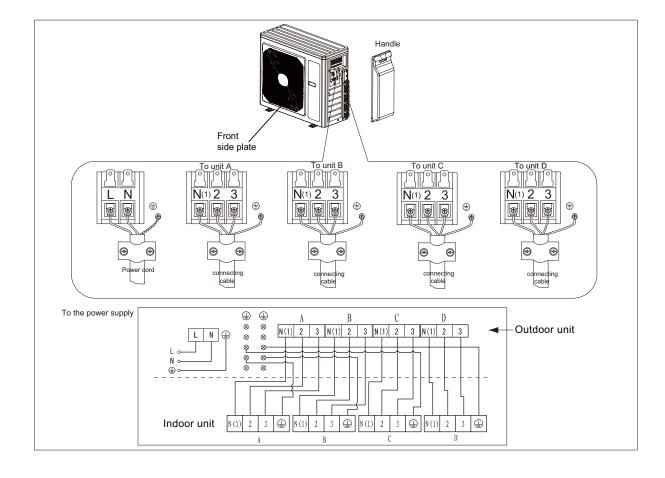
- 1. Remove the handle at the right side plate of the outdoor unit (one screw).
- 2. Remove the cable clamp, connect the power connection cable with the terminal at the row of connection and fix the connection. The fitting line distributing must be consistent with the indoor unit. terminal of line bank. Wiring should meet that of indoor unit.
- 3. Fix power connection wire by wire clamp.
- 4. Ensure wire has been fixed well.
- 5. Install the handle.

Including an air switch with suitable capacity, please note the following table. Air switch should be included magnet buckle and heating buckle function, it can protect the circuit-short and overload. (Caution: please do not use the fuse only for protect the circuit)

Air-conditioner	Air switch capacity
GF28M4E	25A

An all-pole disconnection switch having a contact separation of at least 3mm in all pole should be connected in fixed wiring.

Wrong wire connection may cause malfunction of some electric components. After fixing cable, ensure that leads between connection to fixed point have some space.



The connection pipes and the connectiong wirings of the unit A, unit B, unit C and unit D must be corresponding to each other respective.

The appliance shall be installed in accordance with national wiring regulations.

Note: The above figures are only intended to be a simple diagram of the appliance and may not correspond to the appearance of the units that have been purchased.

8.2 Installing the Outdoor Unit

Use bolts to secure the unit to a flat, solid floor. When mounting the unit on a wall or the roof, make sure the support is firmly secured so that it cannot move in the event of intense vibrations or a strong wind.

Do not install the outdoor unit in pits or air vents Installing the pipes

Use suitable connecting pipes and equipment for the refrigerant R410A.

Models(m)	18K	24K	24K	28K
Max. connection pipe length	20	20	60	70
Max. connection pipe length(Simple one indoor unit)	10	10	20	20

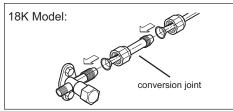
The refrigerant pipes must not exceed the maximum heights 10m.

Mran all the re

Wrap all the refrigerant pipes and joints.

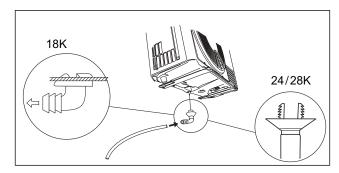
Tighten the connections using two wrences.

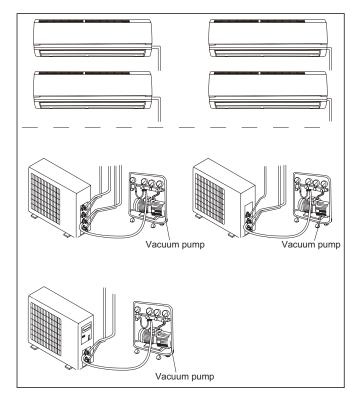
Tighten the connections using two wrenches working in opposite directions.

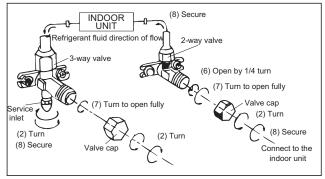

Caution: Installation Must be Performed in Accordance with the NEC/CEC by Authorized Personnel Only.

Humid air left inside the refrigerant circuit can cause compressor malfunction. After having connected the indoor and outdoor units, bleed the air and humidity from the refrigerant circuit using a vacuum pump.

- 1.Unscrew and remove the caps from the 2-way and 3-way valves.
- 2.Unscrew and remove the cap from the service valve.
- 3. Connect the vacuum pump hose to the service valve.
- 4. Operate the vacuum pump for 10-15 minutes until an absolute vacuum of 10 mm Hg has been reached.
- 5. With the vacuum pump still in operation, close the low-pressure knob on the vacuum pump coupling. Stop the vacuum pump.
- 6. Open the 2-way valve by 1/4 turn and then close it after 10 seconds Check all the joints for leaks using liquid soap or an electronic leak device.
- 7. Turn the body of the 2-way and 3-way valves. Disconnect the vacuum pump hose.
- 8. Replace and tighten all the caps on the valves.

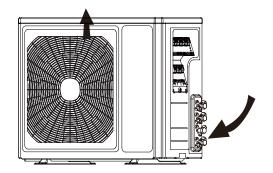

Diameter (mm)	Twisting moment (N.m)
Ф6	15-20
Ф9.52	35-40
Ф16	60-65
Ф12	45-50
Ф19	70-75


18K unit need to be installed the indoor unit



Installthedrainfittingandthedrainhose(for modelwithheatpumponly)

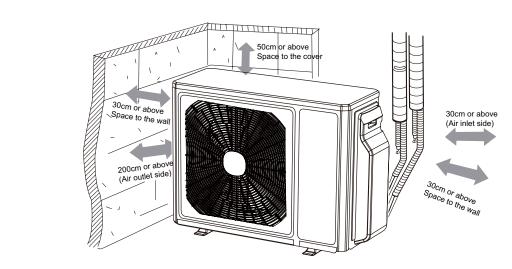
Condensation is produced and flows from the outdoor unit when the appliance is operating in the heating mode. In order not to disturb neighbours and to respect the environment, install a drain fitting and a drain hose to channel the condensate water. Install the drain fitting and rubber washer on the outdoor unit chassis and connect a drain hose to it as shown in the figure.


8.3 Installation Dimension Diagram

⚠ Use suitable instruments for the refrigerant R410A.

• Do not use any other refrigerant than R410A.

Do not use mineral oils to clean the unit.



The installation must be done by trained and qualified service personnel with reliability according to this manual.

Contact service center before installation to avoid the malfunction due to unprofessional installation.

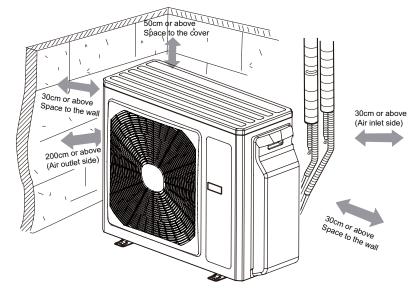

Mhen picking up and moving the units, you must be guidedby trained and qualified person.

Figure that the recommende dspace is left around the appliance.

24/28K

18K

8.4 Check after Installation

Check Items	Problems Owing to Improper Installation
Is the installation reliable?	The unit may drop, vibrate or make noises
Has the gas leakage been checked?	May cause unsatisfactory cooling (heating) effect
Is the thermal insulation of the unit sufficient?	May cause condensation and water dropping
Is the drainage smooth?	May cause condensation and water dropping
Does the power supply voltage accord with the rated voltage specified on the nameplate?	The unit may bread down or the components may be burned out
Are the lines and pipelines correctly installed?	The unit may bread down or the components may be burned out
Has the unit been safely grounded?	Risk of electrical leakage
Are the models of lines in conformity with requirements?	The unit may bread down or the components may be burned out
Are there any obstacles near the air inlet and outlet of the indoor and outdoor units?	The unit may bread down or the components may be burned out
Have the length of refrigerating pipe and refrigerant charge amount been recorded?	It is not easy to decide the charge amount of refrigerant.

36K and 42K

Safety Precautions

Please read this manual carefully before using and operating correctly as instructed in this manual.

Please especially take notice of the following two symbols:

⚠ Warning! It indicates improper operation which will lead to human casualty or severe injury.

 $oldsymbol{\Lambda}$ Caution! It indicates improper operation which will lead to injury or property damage.

⚠ Warning!

- ◆ The installation should be committed to the appointed service center; otherwise it will cause water leakage, electric shock or fire etc.
- ◆ Please install the unit in a place where is strong enough to withstand the weight of the unit; otherwise, the unit would fall down and cause injury or death.
- ♦ The drain pipe should be installed as instructed in the manual to guarantee the proper drainage; meanwhile it should be insulated to prevent condensing; otherwise the improper installation would cause water leakage and then wet the household wares in the room.
 - ◆ Do not use or place any inflammable or explosive substance near the unit.
 - Under the occurrence of an error (like burning smell etc.), please cut off the main power supply of the unit.
 - ◆ Keep good ventilation in the room to avoid oxygen deficit.
 - ◆ Never insert your finger or any other object into the air outlet/inlet grille.
 - ◆ Please take notice of the supporting frame of the unit to see if it is damaged over the long time period of use.
- ◆ Never refit the unit and contact the sales agent or the professional installation personnel for the repair or relocation of the unit.
 - ◆ Non-professional personnel are prohibited to dismantle the electric box owing to the high voltage of the outdoor unit.

An all-pole disconnection switch having a contact separation of at least 3mm in all poles should be connected in fixed wiring.

⚠ Caution!

- ◆ Before installation, please check if the power supply corresponds with the requirement specified on the nameplate and also check its security.
- ♦ Before using the unit, please check if the piping and wiring are correct to avoid water leakage, refrigerant leakage, electric shock, or fire etc.
- ◆ The main power supply must be earthed to avoid the hazard of electric shock and never connect this earth wire to the gas pipe, running water pipe, lightening rod or phone cable's earth lead.
 - ◆ Turn off the unit after it runs at least five minutes; otherwise its service life will be shortened.
 - Do not allow children operate this unit.
 - Do not operate this unit with wet hands.
 - Cut off the main power supply prior to the cleaning of the unit or the replacement of the air filter.
 - ♦ When the unit is not to be used for a long time, please cut off the main power supply of the unit.
 - ◆ Do not expose the unit to the moist or corrosive circumstances.
 - Never step on the unit or place any object on it.
 - It is suggested to have a power-on test annually.

8.5.1 Installation Location and Matters Needing Attention

The installation of the unit must comply with the national and local safety regulations. The installation quality directly affects the normal use, so the user should not carry out the installation personally, instead, the installation and debugging should be done by technician according to this manual. Only after that, can the unit be energized.

- a. How to select the installation location for the indoor unit
- 1) Where there is no direct sunlight.
- 2) Where the top hanger, ceiling and the building structure are strong enough to withstand the weight of the unit.
- 3) Where the drain pipe can be easily connected to outside.
- 4) Where the flow of the air inlet/outlet is not blocked.
- 5) Where the refrigerant pipe of the indoor unit can be easily led to outside.
- 6) Where there is no inflammable, explosive substances or their leakage.
- 7) Where there is no corrosive gas, heavy dust, salt mist, smog or moisture.
- b. How to select the installation location for the outdoor unit
- 1) The outdoor unit must be installed where the bearing surface is stable and secure enough.
- 2) The outdoor unit and indoor unit should be placed as close as possible to minimize the length and bends of the refrigerant pipe.
- 3) Do not install the outdoor unit under the window or between the buildings to prevent the normal running noise entering the room.
 - 4) Where the flow of the air inlet/outlet is not blocked.
- 5) The outdoor unit should be installed where ventilation is in good condition so that the unit can take in and discharge enough air.
- 6) Do not install the unit where there are inflammable and explosive substances and where there is heavy dust, salt fog and other severely polluted air.

No air guiding pipe is allowed to be installed at the air inlet/outlet of the outdoor unit. Under the heating mode, the condensate water would drip down from the base frame and would be frozen when the outdoor ambient temperature is lower than $0^{\circ}\mathrm{C}$ $(32~\mathrm{F})$. Besides, the installation of the outdoor unit should not affect the heat radiation of the unit.

∆CAUTION!

The unit installed in the following places is likely to run abnormally. If unavoidable, please contact the professional personnel at the VESSER appointed service center. ① where is full of oil; ② alkaline soil off the sea; ③ where there is sulfur gas (I ike sulfur hot spring); ④ where there are devices with high frequency (like wireless devices, electric welding devices, or medical equipments); ⑤ special circumstances.

- c. Electric Wiring
- 1) The installation must be done in accordance with the national wiring regulations.
- 2) Only the power cord with the rated voltage and exclusive circuit for the air conditioning can be used.
- 3) Do not pull the power cord by force.
- 4) The electric installation should be carried out by the professional personnel as instructed by the local laws, regulations and also this manual.
- 5) The diameter of the power cord should be large enough and once it is damaged it must be replaced by the dedicated one.
- 6) The earthing should be reliable and the earth wire should be connected to the dedicated device of the building by the professional personnel. Besides, the air switch coupled with the leakage current protection switch must be equipped, which is of enough capacity and of both magnetic and thermal tripping functions in case of the short circuit and overload.

Table 1	
---------	--

Models	Power Supply	Capacity of the Air Switch	Recommended Cord (pieces× sectional area)
36/42K	220-240V~ 50Hz	32A	4mm ² ×3

- d. Earthing Requirements
- 1) The air conditioner is classified into the Class I appliances, so its earthing must be reliable.
- 2) The yellow-green line of the air conditioner is the earth line and can not be used for other purpose, cut off or fixed by the tapping screw; otherwise it would cause the hazard of electric shock.
 - 3) The reliable earth terminal should be provided and the earth wire can not be connected to any of the following places.
 - ① Running water pipe;
 - 2 Coal gas pipe;
 - ③ Sewage pipe;
 - ④ Other places where the professional personnel think unreliable.

GF36M4E

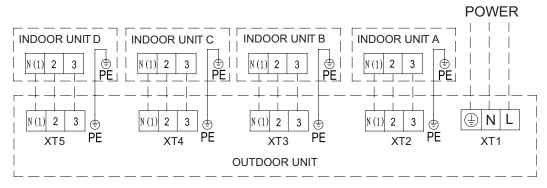


Fig.1

GF42M5E

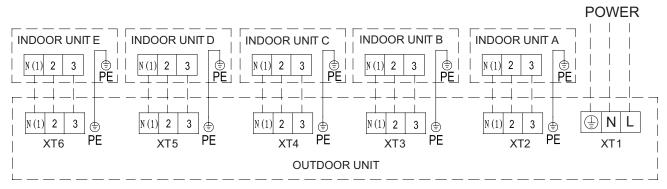
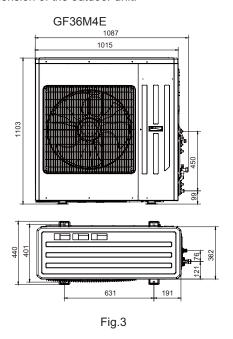
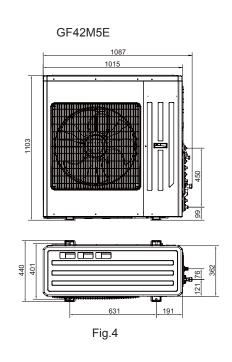


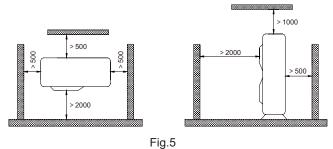
Fig.2

- a. Noise Precautions
- 1) The air conditioning unit should be installed where ventilation is in good condition, otherwise the working capability of the unit would be reduced or working noise would be increased.
- 2) The air conditioning unit should be installed on the base frame which is stable and secure uncouth to withstand the weight of the unit; otherwise it would incur vibration and noise.
- 3) During the installation, a consideration should be taken that the produced hot air or noise should not affect neighbors or surroundings.
- 4) Do not stack obstacles near the air outlet of the outdoor unit; otherwise it would reduce the working capability of the unit or increase the working noise.
 - 5) In the event of the occurrence of abnormal noise, please contact the sales agent as soon as possible.
 - b. Accessories for Installation


Refer to the packing list for the accessories of the indoor and outdoor units respectively.


8.5.2 Installation of the Outdoor Unit

a. Precautions for the Installation of the Outdoor Unit


The following rules should be followed when the installation location is being considered so as to let the unit run well enough.

- 1) The discharged air from the outdoor unit won't return back and enough space should be left for maintenance around the unit.
- 2) The installation location should be in good condition so that the unit is able to take in and discharge enough air. Besides, make sure there is no obstacle at the air inlet/outlet of the unit. If there is, remove it.
- 3) The unit must be installed where it is secure enough to support the weight of the unit and capable of reducing to some extent noise and vibration to make sure they do not bother your neighbors.
- 4) The designated lifting hole must be used for lifting the unit and protect the unit carefully during lifting to prevent damaging the mental sheet which would result in rusting in future.
 - 5) The unit should be installed where there is as little as direct sunlight.
 - 6) The unit must be installed where the rain water and defrosting water can be drained.
 - 7) The unit must be installed where the unit won't be covered by the snow and won't be affected by rubbish and oil fog.
- 8) Rubber or spring shock absorbers should be used during the installation of the outdoor unit to meet the noise and vibration requirements.
- 9) The installation dimensions should meet the requirement covered in this manual and the outdoor unit must be fixed securely.
 - 10) For the Free Match system, Do not install only one indoor unit for the outdoor unit.
 - 11) The installation should be carried out by the professionally skilled personnel.
 - b. Installation of the Outdoor Unit
 - 1) Outline dimension of the outdoor unit.

- 2) During the transportation of the outdoor unit, two lifting ropes long enough must be used in four directions and the included angle must be less than 40° prevent the center of unit deviating.
 - 3) During the installation, M12 screws should be used to fix the support leg and base frame of the unit.
 - 4) The unit should be installed on a concrete base frame with a height of 10cm.
 - 5) The installation space of the unit should be as required in Fig.5.

8.5.3 Connection between Indoor and Outdoor Units

a. Wiring of the Power Cord

∆CAUTION!

A breaker must be installed, capable of cutting off the power supply for the whole system.

- 1) Open the side plate.
- 2) Let the power cord go through the rubber ring.
- 3) Connect the power card to the terminals "L", "N" and also the earthing bolt, and then connect the wiring terminals "N(1),2,3" of the indoor unit to those of the outdoor unit correspondingly.
 - 4) Fix the power cord with wire clips.
 - b. Energy Level and Capacity Code of the Indoor and Outdoor Units

Energy Level Capacity Code 09 25 12 35 Indoor Unit 18 50 21 60 24 71 36 100 **Outdoor Unit** 42 120

Table 2

- 1) The outdoor unit with energy level 36 can drive up to four sets of indoor units, while the outdoor unit 42 can drive up to five.
- 2) The sum of the capacity codes of the indoor units should be among 50%-150% of that of the outdoor unit.
- c. Allowable Length and Height Fall of the Refrigerant Pipe

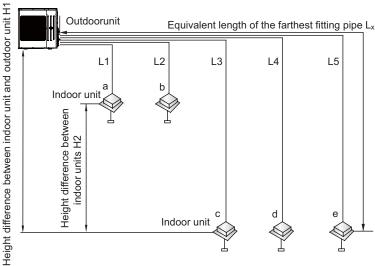


Table 3

		Allowable Length		Refrigerant Pipe	
		36	42	36	42
Total Length(m)		70	80	$L_1+L_2+L_3+L_4$	$L_1+L_2+L_3+L_4+L_5$
Max. Length for Single Unit(m)		20	25	L _x	
Max.	Outdoor unit and indoor unit	15	15	H1	
installation altitude	Indoor unit and indoor unit	7.5	7.5	Н	2

Table 4: Dimension of the Refrigerant Pipe of the Indoor Unit unit: mm

Capacity Level of the Indoor Unit	Gas Pipe	Liquid Pipe
09,12	Ф9.52	Ф6.35
18	Ф12.7	Ф6.35
21,24	Ф15.9	Ф9.52

d.Piping between the Indoor and Outdoor Units

- 1) Refer to Fig.6 for the moments of torque for tightening screws.
- 2) Let the flare end of the copper pipe point at the screw and then tighten the screw by hand.
- 3) After that, tighten the screw by the torque wrench unit it clatters (as shown in Fig.6).
- 4) The bending degree of the pipe can not be too small; otherwise it will crack. And please use a pipe tube benderr to bend the pipe.
 - 5) Wrap the exposed refrigerant pipe and the joints by sponge and then tighten them with the plastic tape.

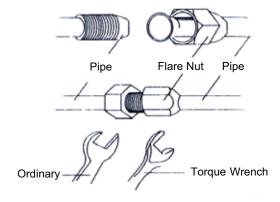


Fig.6
Table 5:Moments of Torque for Tightening Screws

Diameter	Wall Thickness (mm)	Moment of Torque
Ф6.35mm	≥0.5	15-30(N·m)
Ф9.52mm	≥0.71	30-40(N·m)
Ф12.7mm	≥1	45-50(N·m)
Ф15.9mm	≥1	60-65(N·m)

If the specification of the outdoor unit pipe joint does not conform to that of the indoor unit, then the joint specification of the outlet pipe of the indoor unit takes precedence. A reducing nipple shall be installed at the joint of the outdoor unit so as to make the joint of the outdoor unit compatible with that of the indoor unit.

∆CAUTION!

- ① During the connection of the indoor unit and the refrigerant pipe, never pull any joints of the indoor unit by force; otherwise the capillary pipe or other pipe may crack, which then would result in leakage.
 - ② The refrigerant pipe should be supported by brackets, that is, don't let the unit withstand the weight of it.

∆CAUTION!

For the Free match system, each pipe should be labeled to tell which system it belongs to avoid mistaken inaccurate piping.

- e. Installation of the Protection Layer of the Refrigerant Pipe
- 1) The refrigerant pipe should be insulated by the insulating material and plastic tape in order to prevent condensation and water leakage.
- 2) The joints of the indoor unit should be wrapped with the insulating material and no gap is allowed on the joint of the indoor unit, as shown in Fig.7.

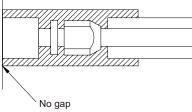


Fig.7

∆CAUTION!

After the pipe is protected well enough, never bend it to form a small angle; otherwise it would crack or break.

- f. Wrapping the Pipe with Tape
- 1) Bundle the refrigerant pipe and electric wire together with tape, and separate them from the drain pipe to prevent the condensate water overflowing.
- 2) Wrap the pipe from the bottom of the outdoor unit to the top of the pipe where it enters the wall. During the wrapping, the later circle should cover half of the former one.
 - 3) Fix the wrapped pipe on the wall with clamps.

∆CAUTION!

- ① Do not wrap the pipe too tightly; otherwise the insulation effect would be weakened. Additionally, make sure the drain hose is separated from the pipe.
 - ② After that, fill the hole on the wall with sealing material to prevent wind and rain coming into the room.

8.5.4 Refrigerant Charging and Trial Running

- a. Refrigerant Charging
- 1) The refrigerant has been charged into the outdoor unit before shipment, while additional refrigerant still need be charged into the refrigerant pipe during the field installation.
 - 2) Check if the liquid valve and the gas valve of the outdoor unit are closed fully.
- 3) As shown in the following figure (Fig.8), expel the gas inside the indoor unit and refrigerant pipe out by the vacuum pump.(2 purposes of outdoor unit's main valve:1.vacuum pumping 2.Control the on /off of outdoor unit refrigerant)

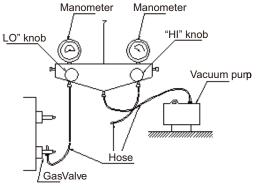


Fig.8

- 4) Make sure the system has no leakage. When compressor is not working, fill a set amount of R410a refrigerant into the unit through outdoor unit's liquid valve. If the inner tube pressure rises and the set amount of refrigerant can't be filled inside quickly, you can turn on the unit to make it start cooling, then fill the refrigerant inside through outdoor unit's gas valve.
 - a. Calculation of the Additional Refrigerant Charging
 - 1) Refrigerant Charge in the Outdoor Unit before Shipment

Table 6

Model	GF36M4E	GF42M5E
Refrigerant Charge (kg)	4.2	4.8

Notes:

- ① The refrigerant charge mentioned in the table above is not included those charged additionally in the indoor unit and the refrigerant pipe.
- ② The amount of the additional refrigerant charge is dependent on the diameter and length of the liquid refrigerant pipe which is decided by the actual yield installation requirement.
 - ③ Record the additional refrigerant charge for future maintenance.
 - 2) Calculation of the Additional Refrigerant Charge

If the total refrigerant pipe length (liquid pipe) is smaller than that listed in the table below, no additional refrigerant will be charged.

Table 7

Model	Total Liquid Pipe Length (a+b+c+d+e)
GF36M4E	≤40m
GF42M5E	≤50m

Additional Refrigerant Charge2=∑Extra Liquid Pipe Length×22g/m(liquid pipe 1/4").

Note: if the total refrigerant pipe length is larger than that listed in the table above, the additional refrigerant for the extra length of the pipe needs to be charged as per 22g/m.

3) Example: GF42M5E

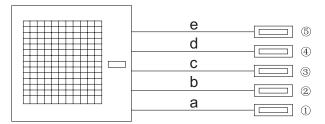


Fig.9

Table 9 Liquid Refrigerant Pipe

Serial No.	е	d	С	b	а
Diameter	Ф6.35	Ф6.35	Ф6.35	Ф6.35	Ф9.52
Length	20m	20m	15m	5m	5m

The total length of each liquid refrigerant pipe is: e+d+c+b+a=20+20+15+5+5=65m. Thus, the minimum additional refrigerant charge=(65-50)×0.022=0.33kg (Note: no additional refrigerant is needed for the liquid pipe within 50m).

4) Additional Refrigerant Charge Record

Table 10 Indoor Unit

No.	Indoor Unit Model	Additional Refrigerant Charge(kg)
1		
2		
N		
	Total	

Table 11 Refrigerant Pipe

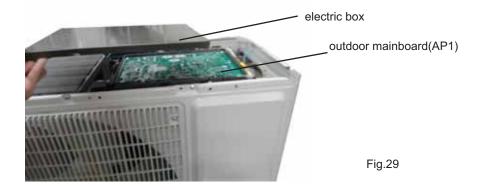
Diameter	Total Length(m)	Additional Refrigerant Charge(kg)
Ф15.9		
Ф12.7		
Ф9.52		
Ф6.35		
Total		

c. Items to be checked after the Installation

Table 12

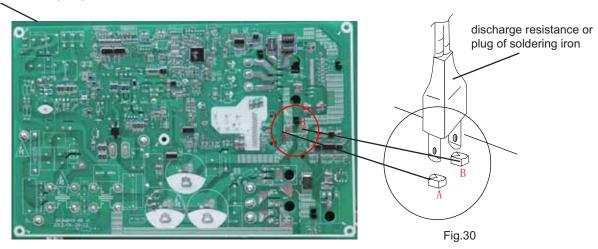
	Table 12	
Items to be Checked	Possible Errors	Check Results
Has each part and component of the unit been	The unit may fall off, vibrate or generate	rtosuits
installed securely?	noise.	
Has the gas leakage test been taken?	The cooling (heating) capacity may be poor.	
Is the thermal insulation sufficient?	Dews and water drops may be generated.	
Does the drainage go well?	Dews and water drops may be generated.	
Is the actual power voltage in line with the value	The unit may break down or some components	
marked on the nameplate?	may be burnt out.	
Are the wiring and the piping correct?	The unit may break down or some components may be burnt out.	
Has the unit been earthed reliably?	There may be a danger of electric shock.	
Does the wire meet the regulated requirement?	The unit may break down or the component may be burnt out.	
Is there any obstacle at the air inlet/outlet of the indoor/outdoor unit?	The cooling (heating) capacity may be poor	
Have the length of the refrigerant pipe and the	It may be hard to know the exact refrigerant	
refrigerant charge been recorded?	charge.	

d.Trial Running


- 1) Check before the Trial Running
- ① Check if the appearance of the unit and the piping system are damaged during the transportation.
- ② Check if the wiring terminals of the electronic component are secure.
- 3 Check if the rotation direction of the fan motor is right.
- 4 Check if all valves in the system are fully opened.
- 2) Trial Running
- ① The trial running should be carried out by the professionally skilled personnel on the premise that all items listed above are in normal conditions.
 - ② Let the unit energized and switch the wired controller or the remoter controller to "ON".
 - ③ The fan motor and compressor of the outdoor unit will run automatically in one minute.
 - ④ If there is some unusual sound after the compressor is started, turn off the unit for an immediate check.

9. Maintenance

9.1 Precautions before Performing Inspection or Repair


There are high-capacity electrolytic capacitors on the outdoor mainboard. Thus, even the power is cut off, there is high voltage inside the capacitors and it needs more than 20min to reduce the voltage to safety value. Touching the electrolytic capacitor within 20min after cutting the power will cause electric shock. If maintenance is needed, follow the steps below to discharge electricity of electrolytic capacitor after power off.

(1) Open the top cover of outdoor unit and then remove the cover of electric box.

(2) As shown in the fig below, connect the plug of discharge resistance (about 100ohm, 20W) (if there is no discharge resistance, you can use the plug of soldering iron) to point A and B of electrolytic capacitor. There will be sparks when touching them. Press them forcibly for 30s to discharge electricity of electrolytic capacitor.

(3) After finish discharging electricity, measure the voltage between point A and B with universal meter to make sure if electricity discharging is completed, in order to prevent electric shock. If the voltage between the two points is below 20V, you can perform maintenance safely.

9.2 Flashing LED of Indoor/Outdoor Unit and Primary Judgement

1. Requirement of malfunction display

When several malfunctions happen at the same time, malfunction codes will be displayed circularly.

- 2. Malfunction display method
- (1) Hardware malfunction: it will be displayed immediately, please refer to "Malfunction status sheet";
- (2) Operation status: it will be displayed immediately, please refer to "Malfunction status sheet";
- (3) Other malfunction: It will be displayed after the compressor has been stopped for 200s, please refer to "Malfunction status sheet".

(Note: when the compressor starts up again, malfunction display waiting time (200s) will be cleared.)

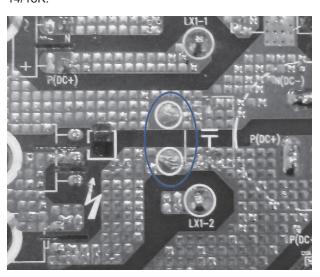
3. Malfunction display control

Indoor unit displays malfunction code as shown in the sheet below. ODU communication light will be off for 1s and then blink for 1s circularly.

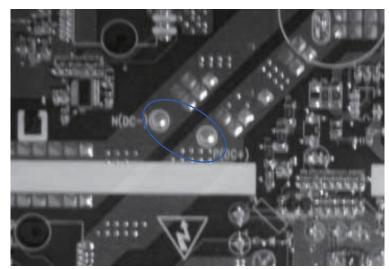
4. Viewing malfunction code through remote controller

Enter viewing malfunction code: pressing light button for 6 times within 3S to view malfunction code;

Exit viewing malfunction code: pressing light button for 6 times within 3S or after the malfunction code is displayed for 5min.


Malfunction status sheet							
Malfunction name	Malfunction type	Nixie tube					
Zero cross detection circuit malfunction	Hardware malfunction	U8					
Malfunction protection of jumper cap	Hardware malfunction	C5					
Feedback of without IDU motor	Hardware malfunction	H6					
Indoor ambient temperature sensor is open/short circuited	Hardware malfunction	F1					
Indoor evaporator temperature sensor is open/short circuited	Hardware malfunction	F2					
Liquid valve temperature sensor is open/short circuited	Hardware malfunction	b5					
Gas valve temperature sensor is open/short circuited	Hardware malfunction	b7					
Modular temperature sensor is open/short circuited	Hardware malfunction	P7					
Outdoor ambient temperature sensor is open/short circuited	Hardware malfunction	F4					
Outdoor condenser inlet pipe temperature sensor is open/short circuited (commercial)	Hardware malfunction	A5					
Outdoor condenser middle pipe temperature sensor is open/short circuited	Hardware malfunction	F4					
Outdoor condenser outlet pipe temperature sensor is open/short circuited (commercial)	Hardware malfunction	A7					
Outdoor discharge temperature sensor is open/short circuited	Hardware malfunction	F5					
Communication malfunction	Hardware malfunction	E6					
Malfunction of phase current detection circuit for compressor	Hardware malfunction	U1					
Compressor demagnetization protection		HE					
Malfunction of voltage dropping for DC bus-bar	Viewing malfunction code	U3					
Module high temperature protection	through remote controller within	P8					
Refrigerant lacking or blockage protection of system (not available for residential ODU)	200s; displayed directly on nixietube after 200s	F0					
Charging malfunction of capacitor	Hardware malfunction	PU					
High pressure protection of system	Hardware malfunction	E1					
Low pressure protection of system (reserved)	Hardware malfunction	E3					

	Viewing malfunction code	
	through remote controller within	Н3
Compressor overload protection	200s; displayed directly on	110
	nixietube after 200s	
Indoor unit and outdoor unit do not match	Hardware malfunction	LP
Malfunction of memory chip	Hardware malfunction	EE
Wrong connection of communication wire or malfunction of	Hardware malfunction	dn
electronic expansion valve	Hardware manunction	
Malfunction of complete units current detection	Hardware malfunction	U5
Malfunction protection of outdoor fan 1	Hardware malfunction	L3
Detection status of wrong connection of communication wire	Operation status	dd
or malfunction of electronic expansion valve	Operation status	
Mode conflict	Operation status	E7
Refrigerant recycling mode	Operation status	Fo
X-fan	Operation status	AL
Defrosting or oil return in heating mode	Operation status	H1
Start failure of compressor		Lc
High discharge temperature protection of compressor		E4
Overload protection		E8
Whole unit overcurrent protection		E5
Compressor phase current protection	Viewing malfunction code	P5
Compressor desynchronizing	through remote controller within	H7
Compressor phase-lacking/phase-inverse protection	200s; displayed directly on	Ld
IPM modular protection	nixietube after 200s	H5
DC bus-bar low voltage protection		PL
DC bus-bar high voltage protection		PH
PFC protection		HC
The four-way valve is abnormal		U7


9.3 Malfunction Checking and Elimination

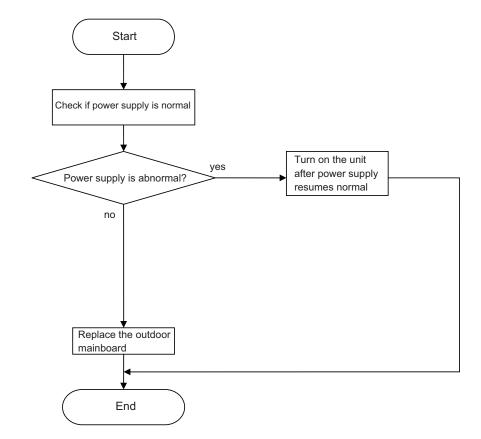
Note: discharge the position in below pictures with discharge resistance after open the top cover and check if the voltage is below 20V with universal meter, then begin to check.

24/28K:

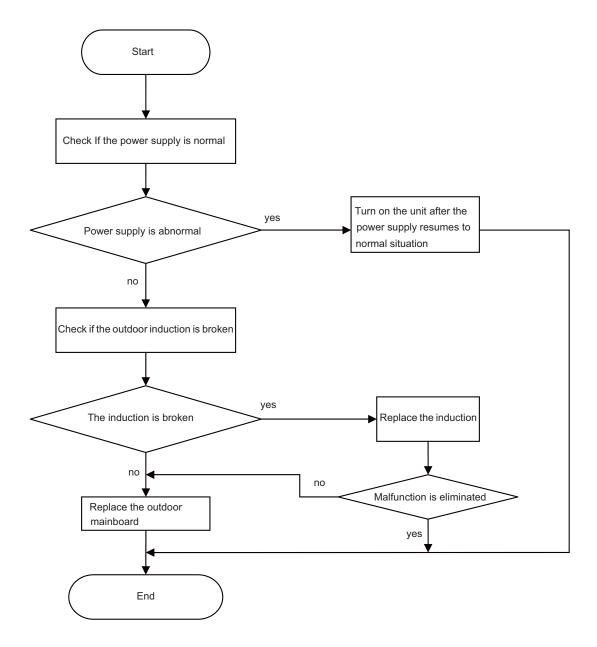
1 IPM protection malfunction:

Main checking point:

- If the input voltage of the unit is within normal range?
- If the connection wire of compressor is connected well? Is it loose? If the connection sequence is correct?


- If the resistance of compressor coil is normal? If the isolation of compressor coil with copper pipe is good?
- If the unit is overloaded? If the heat radiation of the unit is good?
- If the refrigerant charge is suitable?

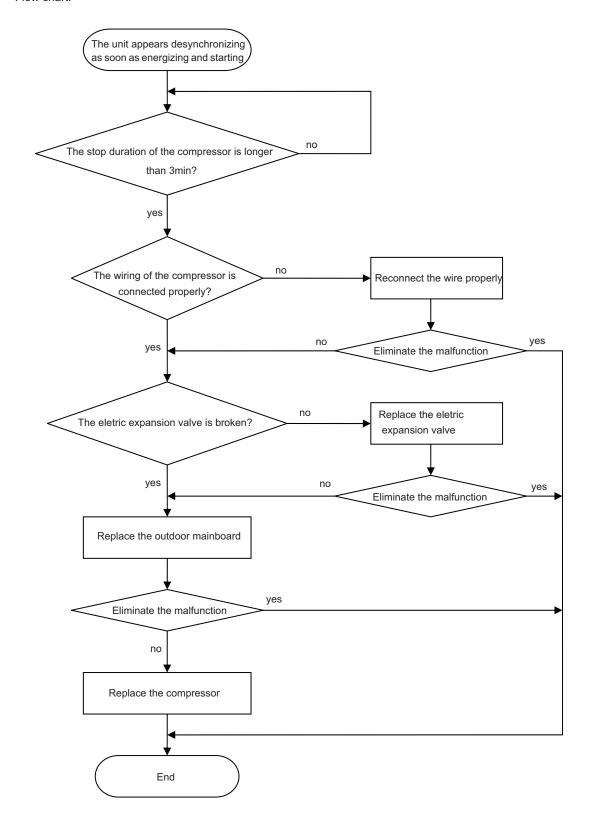
Energize the unit Flow chart: Please check: 1. if the indoor and outdoor heat exchanges are dirty, if there is obstacle to affect the radiation; 2. if the indoor and outdoor fans are running yes If the above cases are existed? normally; 3. if the pressure of the system is too high; 4. if the refrigerant is too much which causes the high level of pressure; no Correct according to the service manual and then energize the no unit to operate If the wire of compressor is connected well and correctly? yes Reconnect the wire of the compressor according to the Test the resistance between correct wiring method the three phases nο If the resistance is normal? ves Test the isolation impedance between the three phases of the compressor and thecopper pipe yes If the resistance is above 500M Ω ? no Replace the compressor yes Malfunction is eliminated no Replace the outdoor mainboard End

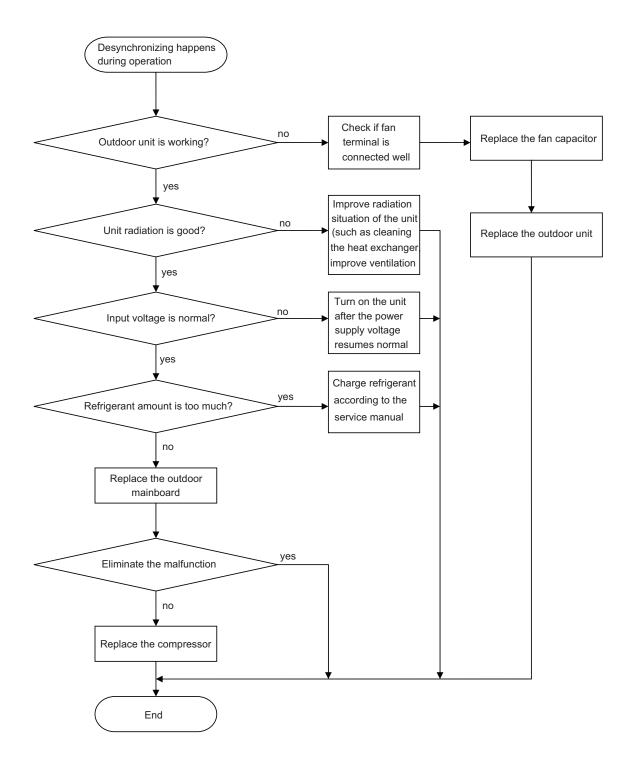

- 2. PFC protection malfunction, capacity charging malfunction Main checking points:
- If the wiring of the induction is connected well and if the induction is broken;
- If the mainboard is broken;

Flow chart:

For 18K

For 24/28K

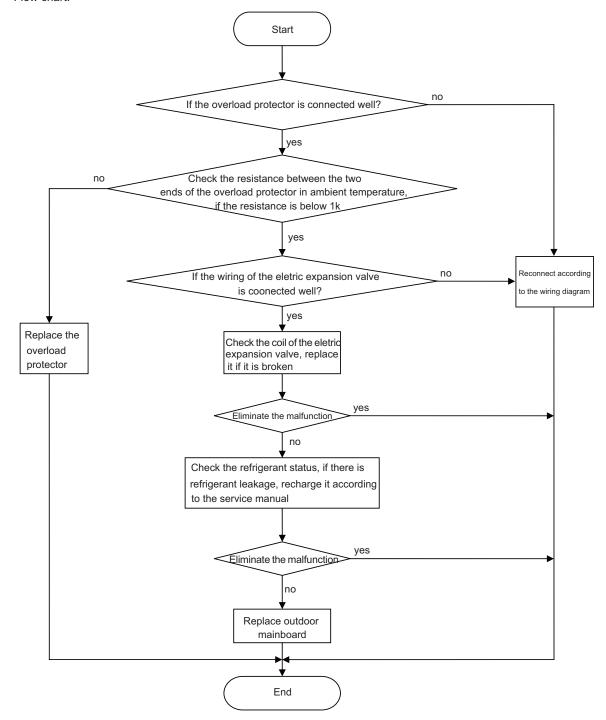



3. Compressor desynchronizing malfunction

Main checking points:

- If the pressure of the system is too high;
- If the eletric expansion valve is working normally or it is broken;
- If the radiation of the unit is good;

Flow chart:

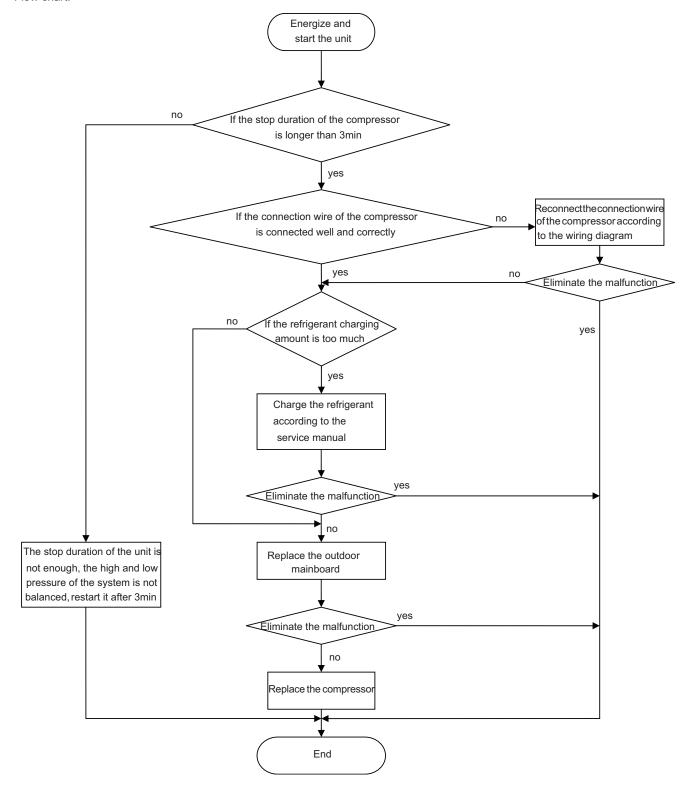


4. Compressor overload, diacharge protectionmalfunction

Main checking points:

- If the eletric expansion valve is connected well or it is broken;
- If there is refrigerant leakage;
- If the overload protector is broken;

Flow chart:


Note: the detection method of the coil of the eletric expansion valve: there is five pieces of coil of the eletric expansion valve, the resistance of one of them (the leftmost or the rightmost one) is almost the same as the resistance of other terminal (within 100Ω). Judge the condition of the electronic expansion valve through detecting these resistance.

5. Start failuremalfunction

Main checking points:

- If the connection wire of the compressor is connected properly;
- If the stop duration of the compressor is sufficient;
- If the compressor is broken;
- If the refrigerant charging amount is too much;

Flow chart:

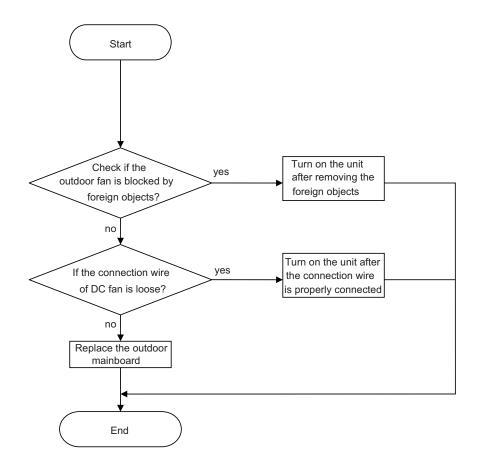


6. Temperature sensor malfunction

Main checking points:

- If the temperature sensor is damaged or broken
- If the terminal of the temperature sensor is loosended or not connected;
- If the mainboard is broken;

Flow chart:

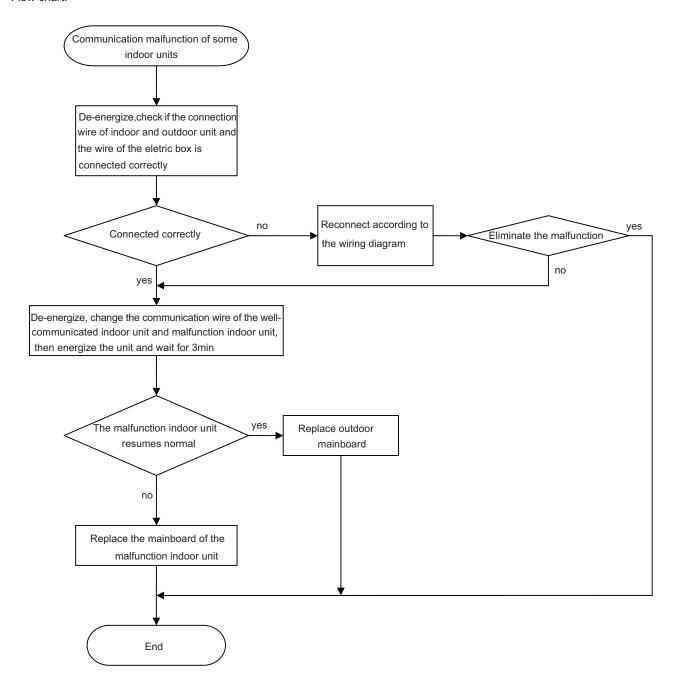


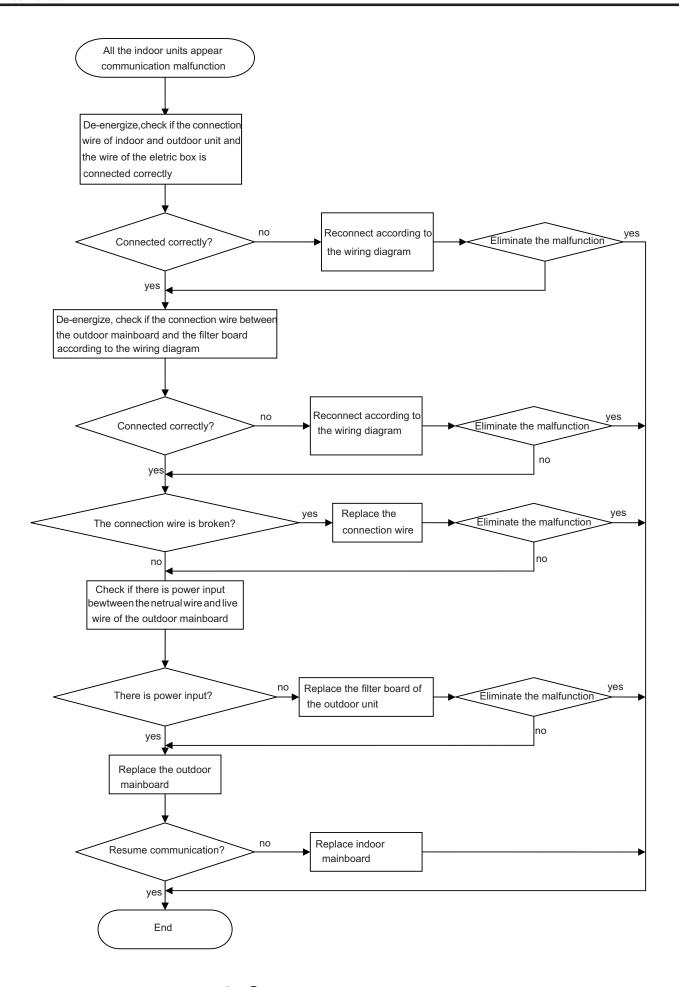
7. DC fan malfunction

Main checking points:

- If the outdoor fan is blocked by foreign objects;
- The connection wire of DC fan is connected reliably? If it is loose?

Flow chart:

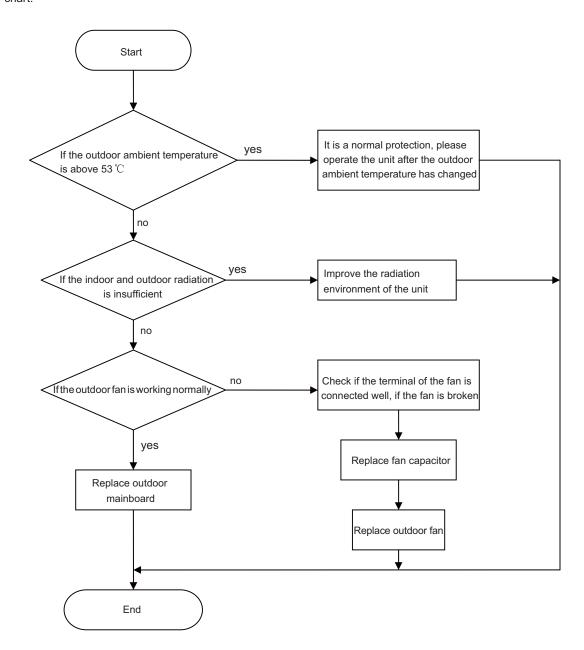



8. Communication malfunction

Main checking points:

- If the connection wire between the indoor unit and outdoor unit is connected well, if the wires inside the unit is connected well;
- If the indoor mainboard or outdoor main board is broken;

Flow chart:



9. Anti-high temperatureand overload malfunction

Main checking points:

- If the outdoor ambient temperature is within the normal range;
- If the indoor fan and outdoor fan are running normally;
- If the indoor and outdoor radiation environment is good;

Flow chart:

Models:36K and 42K

1. Trouble Table

⚠ WARNING!

a.In the event of abnormal conditions (like, stinky smell), please shut off the main power supply immediately and then contact Vidicon appointed service center; otherwise the continuous abnormal running would damage the air conditioning unit and also would cause electric shock or fire hazard etc.

b.Do not repair the air conditioning personally but instead contact the professionally skilled personnel at the Vidicon appointed service center, as the incorrect repair would cause electric shock or fire hazard etc.

1.1 Check before Contacting Service Center

Please check the following items before contacting the maintenance serviceman.

sade check the following terms before contacting the maintenance servicement.						
Conditions	Causes	Corrective Actions				
	Broken fuse or opened breaker	Change the fuse or close the breaker				
	Power off	Restart the unit when power on				
The unit does not run	Loosened power supply plug.	Plug the power supply properly.				
	Insufficient batteries voltage of the remote controller	Change new batteries				
	Remoter controller out of the control scope	Keep the control distance within 8 meters.				
The unit stops soon after it starts	Clogged inlet/outlet of the indoor/outdoor unit	Clear the obstacle				
	Clogged inlet/outlet of the indoor/outdoor unit	Clear the obstacle				
	Improperly set temperature	Adjust the setting of the remote or wired controller.				
	Too low set fan speed	Adjust the setting of the remote or wired controller.				
Cooling/Hosting	Improper airflow direction	Adjust the setting of the remote or wired controller.				
Cooling/Heating is abnormal	Opened door and window	Close the door and window				
	Direct sunlight	Hang a curtain or blinds over the window.				
	Too much people in the room					
	Too much heat sources in the room	Reduce the heat sources				
	Dirty filter screen	Clean the filter screen				

Table 1

Note: If the air conditioner still runs abnormally after the above check and handling, please contact the maintenance serviceman at the local appointed service center and also give a description of the error occurred as well as the model of the unit

1.2 Problem Handling

The conditions listed below are not classified into errors.

	Conditions	Causes
The unit does	When restart the unit soon after it is stopped.	The overload protection switch of the unit let the startup delayed for three minutes.
not run	As soon as power is on.	The unit will stand by for approximate one minute.
The unit blows out mist	When the cooling operation starts.	The hi-humidity air indoor is cooled quickly.
The unit "clatters" as soon as it starts running.		It is the sound generated during the initialization of the electronic expansion valve.
The unit generates noise	The unit "swishes" during the cooling operation.	It is the sound when the refrigerant gas runs inside the unit.
	The unit "swishes" when it is started or stopped.	It is the sound when the refrigerant gas stops running.
	The unit "swishes" when it is in and after the running.	It is the sound when the draining system is operating.
	The unit "squeaks" when it is in and after the running.	It is the sound of frication generated by the skin plate etc which swells due to the temperature change.
The unit blows out dust.	When the unit restarts after it is not used for a long time.	The dust inside the unit is blown out again.
The unit emits odors.	When the unit is running.	The odors absorbed in are blown out again.

Table 2

1.3 Error Description

If some error occurs when the unit is running, the error code will be displayed on the wired controller and the main board the outdoor unit. See the table before for more details about the meaning of each error.

Outdoor Indicating LED Flashing Times						Wired		
Error Item	Unit 88 Display	Running LED	Cooling LED	Heating LED	88 Display	Controler Display	Error Type	
High Pressure Protection	E1	Flash once	/	/	E1	E1	Outdoor	
Shutdown for Whole Unit Anti-Freeze Protection	E2	Flash twice	/	/	E2	E2	System Error	
Low Pressure Protection	E3	Flash 3 times	/	/	E3	E3	Outdoor	
High Discharge Temp Protection	E4	Flash 4 times	/	/	E4	E4	Outdoor	
Communication Error	E6	Flash 6 times	/	/	E6	E6	Outdoor & Indoor	
Indoor Unit Water Full Error	E9	Flash 9 times	/	/	E9	E9	Indoor	
Refrigerant Recovery Mode	Fo	Quick Flashing	Quick Flashing	/	Fo	Fo	Special Mode	
Outdoor Ambient Temp Sensor Error	F3	/	Flash 3 times	/	F3	F3	Outdoor	
Outdoor Mid-Coil Temp Sensor Error	F4	/	Flash 4 times	/	F4	F4	Outdoor	
Outdoor Discharge Air Temp Sensor Error	F5	/	Flash 5 times	/	F5	F5	Outdoor	
Oil Return for Cooling	F7	/	/	/	/	/	Special Mode	
Forced Defrosting	H1	Quick Flashing	/	/	H1	H1	Special Mode	
Oil Return for Heating or Defrosting	H1	/	/	Flash once	H1	*:	Special Mode	
Compressor Overheat Protection	НЗ	/	/	Flash 3 times	НЗ	НЗ	Drive Error	
IPM Protection	H5	/	/	Flash 5 times	H5	H5	Drive Error	
Motor Desynchronizing	Н7	/	/	Flash 7 times	H7	H7	Drive Error	
PFC Error	Нс	/	/	Flash 6 times	Нс	Нс	Drive Error	
Startup Failure	Lc	/	/	Flash 11 times	Lc	Lc	Drive Error	
DC Fan motor Error	LA	/	/	/	/	/	Outdoor	
No indoor fan motor	H6	Flash 11 times	/	/	/	/	Indoor	
Compressor phase circuit detection error	U1	/	/	Flash 12 times	/	/	Outdoor	
DC link voltage drop error	U3	/	/	Flash 20 times	/	/	Outdoor	
Zero detection circuit error	U8	Flash 17 times	/	/	/	/	Outdoor	
Phase Loss	Ld	Flash 3 times	Flash 3 times	Flash 3 times	Ld	Ld	Drive Error	
Compressor Stalling	LE	Flash 3 times	Flash 3 times	Flash 3 times	LE	LE	Drive Error	
Over-Speed	LF	Flash 3 times	Flash 3 times	Flash 3 times	LF	LF	Drive Error	
IPM Reset	P0	Flash 3 times	Flash 3 times	Flash 3 times	P0	P0	Drive Error	
Compressor Current Protection	P5	/	/	Flash 15 times	P5	P5	Drive Error	
Communication Error between the Inverter Drive and the Main Controller	P6	Flash 16 times	/	/	P6	P6	Drive Error	
Radiator Temp Sensor Error	P7	/	/	Flash 18 times	P7	P7	Drive Error	
Radiator Overheat Protection	P8	/	/	Flash 19 times	P8	P8	Drive Error	

Table 3

AC Contactor Protection	P9	Flash 3 times	Flash 3 times	Flash 3 times	P9	P9	Drive Error
Current Sensor Error	Pc	/	/	Flash 12 times		U1	Drive Error
Sensor Connection Protection	Pd	Flash 3 times	Flash 3 times	Flash 3 times	Pd	Pd	Drive Error
Over Voltage Protection	PH	/	Flash 11 times	/	PH	PH	Drive Error
Low Voltage Protection	PL	/	/	Flash 21 times	PL	PL	Drive Error
Temp Drift Protection	PE	Flash 3 times	Flash 3 times	Flash 3 times	PE	PE	Drive Error
Drive Board Ambient Temp Sensor Error	PF	Flash 3 times	Flash 3 times	Flash 3 times	PF	PF	Drive Error
AC Current Protection	PA	Flash 5 times	/	/	E5	E5	Drive Error
Charging Circuit Error	PU	/	/	Flash 17 times	PU	PU	Drive Error
AC Input Voltage Anomaly	PP	Flash 3 times	Flash 3 times	Flash 3 times	PP	PP	Drive Error
Unit communication error	See Table 5	Flash 6 times	1	1	E6	E6	Indoor
Unit n indoor pipe midway temperature sensor error	See Table 5	/	Flash twice	/	E2	E2	Indoor
Indoor Evaporator Temp Sensor Short/ Open-Circuit	See Table 5	1	Flash twice	/	F2	F2	Indoor
(Air Valve) Unit n indoor unit pipe outlet temperature sensor error	See Table 5	/	Flash 22 times	/	b7	b7	Indoor
(Liquid Valve) Unit n indoor pipe inlet temperature sensor error	See Table 5	/	Flash 19 times	/	b5	b5	Indoor
Unit n mode conflict	See Table 5	/	Flash once	/	F1	F1	Indoor
Mode Conflict	See Table 5	Flash 7 times	/	/	E7	E7	Indoor

The error codes for wall mounted type unit are shown in the following tableb):

Outdoor Error Item Unit 88 Display	Outdoor	Indicati	cating LED Flashing Times			Wired	
	Running LED	Cooling LED	Heating LED	Display	Controler Display	Error Type	
High Pressure Protection	E1	Flash once	/	/	E1	E1	Outdoor
Shutdown for Whole Unit Anti-Freeze Protection	E2	Flash twice	1	1	E2	E2	System Error
Low Pressure Protection	E3	Flash 3 times	/	/	E3	E3	Outdoor

High Discharge Temp Protection	E4	Flash 4 times	1	1	E4	E4	Outdoor
Communication Error	E6	Flash 6 times	1	1	E6	E6	Outdoor & Indoor
Indoor Unit Water Full Error	E9	Flash 9 times	/	1	E9	E9	Indoor
Refrigerant Recovery Mode	Fo	Flash once	Flash once	/	Fo	Fo	Special Mode
Outdoor Ambient Temp Sensor Error	F3	/	Flash 3 times	/	F3	F3	Outdoor
Outdoor Mid-Coil Temp Sensor Error	F4	/	Flash 4 times	/	F4	F4	Outdoor
Outdoor Discharge Air Temp Sensor Error	F5	1	Flash 5 times	/	F5	F5	Outdoor
Oil Return for Cooling	F7	/	Flash 7 times	/	1	/	Special Mode
Forced Defrosting	H1	Quick Flashing	/	/	H1	H1	Special Mode
Oil Return for Heating or Defrosting	H1	/	/	Flash once	H1	*:	Special Mode
Compressor Overheat Protection	НЗ	/	1	Flash 3 times	Н3	НЗ	Drive Error
IPM Protection	H5	1	1	Flash 5 times	H5	H5	Drive Error
Motor Desynchronizing	H7	1	1	Flash 7 times	H7	H7	Drive Error
PFC Error	Нс	1	/	Flash 6 times	Нс	Нс	Drive Error
Startup Failure	Lc	1	/	Flash 11 times	Lc	Lc	Drive Error
DC Fan motor Error	LA	Flash 24 times	/	1	LA	LA	Outdoor
Phase Loss	Ld	1	1	1	Ld	Ld	Drive Error
Compressor Stalling	LE	1	/	1	LE	LE	Drive Error
Over-Speed	LF	1	/	/	LF	LF	Drive Error
IPM Reset	P0	1	/	1	P0	P0	Drive Error
Compressor Current Protection	P5	/	/	Flash 15 times	P5	P5	Drive Error
Communication Error between the Inverter Drive and the Main Controller	P6	Flash 16 times	1	/	P6	P6	Drive Error
Radiator Temp Sensor Error	P7	/	/	Flash 18 times	P7	P7	Drive Error
Radiator Overheat Protection	P8	/	/	Flash 19 times	P8	P8	Drive Error
AC Contactor Protection	P9	/	1	1	P9	P9	Drive Error
Sensor Connection Protection	Pd	/	/	/	Pd	Pd	Drive Error
Low Voltage Protection	PL	1	1	Flash 21 times	PL	PL	Drive Error

Table 4